A099233 Square array read by antidiagonals associated to sections of 1/(1-x-x^k).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 8, 1, 1, 1, 6, 15, 26, 28, 13, 1, 1, 1, 7, 21, 45, 69, 60, 21, 1, 1, 1, 8, 28, 71, 140, 181, 129, 34, 1, 1, 1, 9, 36, 105, 251, 431, 476, 277, 55, 1, 1, 1, 10, 45, 148, 413, 882, 1326, 1252, 595, 89, 1
Offset: 0
Examples
Rows begin 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 3, 5, 8, ... 1, 1, 3, 6, 13, 28, ... 1, 1, 4, 10, 26, 69, ... 1, 1, 5, 15, 45, 140, ... Row 1 is the 0-section of 1/(1-x-x) (A000079); Row 2 is the 1-section of 1/(1-x-x^2) (A000045); Row 3 is the 2-section of 1/(1-x-x^3) (A000930); Row 4 is the 3-section of 1/(1-x-x^4) (A003269); etc.
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).