cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A099236 Sums of antidiagonals of A099233.

Original entry on oeis.org

1, 2, 3, 5, 9, 18, 39, 91, 226, 594, 1643, 4763, 14419, 45444, 148714, 504150, 1766930, 6390720, 23815168, 91306968, 359694457, 1454213026, 6027213531, 25583995337, 111118605583, 493407322280, 2238131105770, 10363617299670, 48954143141361
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Formula

a(n)=sum{j=0..n, sum{k=0..n-j, binomial(j(n-j-k), k)}}

A099234 A trisection of 1/(1-x-x^4).

Original entry on oeis.org

1, 1, 4, 10, 26, 69, 181, 476, 1252, 3292, 8657, 22765, 59864, 157422, 413966, 1088589, 2862617, 7527704, 19795288, 52054840, 136886433, 359964521, 946583628, 2489191330, 6545722210, 17213011605, 45264335853, 119029728628
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

A row of A099233.
Row sums of number triangle A116089. - Paul Barry, Feb 04 2006

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x (1+x)^3),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,3,1},{1,1,4,10},30] (* Harvey P. Dale, Jun 05 2011 *)

Formula

G.f.: 1/(1-x*(1+x)^3).
a(n) = Sum_{k=0..n} binomial(3*(n-k), k).
a(n) = a(n-1)+3*a(n-2)+3*a(n-3)+a(n-4).
a(n) = A003269(3n).
a(n) = Sum_{k=0..n} C(3*k,n-k) = Sum_{k=0..n} C(n,k)*C(4*k,n)/C(4*k,k). - Paul Barry, Feb 04 2006
G.f.: 1/(G(0) - x) where G(k) = 1 - (2*k+3)*x/(2*k+1 - x*(k+2)*(2*k+1)/(x*(k+2) - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2012

A099237 a(n) = Sum_{k=0..n} binomial(n*(n-k), k).

Original entry on oeis.org

1, 1, 3, 10, 45, 251, 1624, 11908, 97545, 880660, 8664546, 92096731, 1050304775, 12778138842, 165033693175, 2253204163256, 32401745953105, 489207829112931, 7733130368443057, 127664099576228184, 2196149923000824756
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Main diagonal of A099233.

Crossrefs

Programs

Formula

From Vaclav Kotesovec, Feb 19 2018: (Start)
a(n)^(1/n) ~ n^(n/w) * (n+1-w)^(1 - (n+1)/w) * (w-1)^(1/w - 1), where w = LambertW(exp(1)*n),
a(n)^(1/n) ~ n/log(n), but the convergence is too slow. (End)
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 1 (mod 2^k) and a(3^k) == 1 (mod 3^(k+1)); a(p^k) == 1 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n-k). Cf. A359842. (End)

A099235 A quadrisection of 1/(1-x-x^5).

Original entry on oeis.org

1, 1, 5, 15, 45, 140, 431, 1326, 4085, 12580, 38740, 119305, 367411, 1131476, 3484490, 10730820, 33046585, 101770120, 313410816, 965178576, 2972359720, 9153665985, 28189589705, 86812537085, 267347509271, 823322219501
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

A row of A099233.
The number of ways to place non-overlapping Young diagrams of shape (2,1,1,1) on an 7 by n rectangle. - Per Alexandersson, Jun 23 2025

Crossrefs

Programs

  • Mathematica
    Take[CoefficientList[Series[1/(1-x-x^5),{x,0,100}],x],{1,-1,4}] (* or *) LinearRecurrence[{1,4,6,4,1},{1,1,5,15,45},30] (* Harvey P. Dale, Mar 06 2015 *)

Formula

G.f.: 1/(1-x*(1+x)^4).
a(n) = Sum_{k=0..n} binomial(4(n-k), k).
a(n) = a(n-1) + 4*a(n-2) + 6*a(n-3) + 4*a(n-4) + a(n-5).
a(n) = A003520(4n).

A099238 Square array read by antidiagonals with rows generated by 1/(1-x-x^(k+1)).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 3, 16, 1, 1, 1, 2, 5, 32, 1, 1, 1, 1, 3, 8, 64, 1, 1, 1, 1, 2, 4, 13, 128, 1, 1, 1, 1, 1, 3, 6, 21, 256, 1, 1, 1, 1, 1, 2, 4, 9, 34, 512, 1, 1, 1, 1, 1, 1, 3, 5, 13, 55, 1024, 1, 1, 1, 1, 1, 1, 2, 4, 7, 19, 89, 2048
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Sections of rows are given by array A099233. Sums of antidiagonals yield A097939.
The triangle of diagonals terminated after reaching the repeating value is A329146. - Andrey Zabolotskiy, Sep 01 2020

Examples

			Rows begin
1,   2,   4,   8,  16,  32,  64, 128, 256, ... (A000079)
1,   1,   2,   3,   5,   8,  13,  21,  34, ... (A000045)
1,   1,   1,   2,   3,   4,   6,   9,  13, ... (A000930)
1,   1,   1,   1,   2,   3,   4,   5,   7, ... (A003269)
1,   1,   1,   1,   1,   2,   3,   4,   5, ... (A003520)
		

Formula

Square array T(n, k) = Sum_{j=0..floor(n/(k+1))} binomial(n-k*j, j), n, k>=0.

A361830 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    2,   2,    2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   46,   62,   80,  100, ...
   70, 136,  226,  342,  486,  660, ...
  252, 592, 1136, 1932, 3030, 4482, ...
		

Crossrefs

Columns k=0..5 give A000984, A006139, A137635, A361812, A361813, A361814.
Main diagonal gives A361829.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));

Formula

G.f. of column k: 1/sqrt(1 - 4*x*(1+x)^k).
n*T(n,k) = 2 * Sum_{j=0..k} binomial(k,j)*(2*n-1-j)*T(n-1-j,k) for n > k.

A373717 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..floor(k*n/(2*k+1))} binomial(k * (n-2*j),j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 5, 7, 8, 6, 1, 1, 1, 1, 6, 9, 13, 15, 9, 1, 1, 1, 1, 7, 11, 19, 28, 26, 13, 1, 1, 1, 1, 8, 13, 26, 45, 53, 45, 19, 1, 1, 1, 1, 9, 15, 34, 66, 91, 105, 80, 28, 1, 1, 1, 1, 10, 17, 43, 91, 141, 201, 211, 140, 41, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2024

Keywords

Examples

			Square array begins:
  1, 1,  1,  1,  1,  1,  1, ...
  1, 1,  1,  1,  1,  1,  1, ...
  1, 1,  1,  1,  1,  1,  1, ...
  1, 2,  3,  4,  5,  6,  7, ...
  1, 3,  5,  7,  9, 11, 13, ...
  1, 4,  8, 13, 19, 26, 34, ...
  1, 6, 15, 28, 45, 66, 91, ...
		

Crossrefs

Columns k=0..3 give A000012, A000930, A193147, A373718.
Main diagonal gives A373719.
Cf. A099233.

Programs

  • PARI
    T(n, k) = sum(j=0, k*n\(2*k+1), binomial(k*(n-2*j), j));

Formula

G.f. of column k: 1/(1 - x * (1 + x^2)^k).
T(n,k) = Sum_{j=0..k} binomial(k,j) * T(n-2*j-1,k).
Showing 1-7 of 7 results.