cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A099233 Square array read by antidiagonals associated to sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 8, 1, 1, 1, 6, 15, 26, 28, 13, 1, 1, 1, 7, 21, 45, 69, 60, 21, 1, 1, 1, 8, 28, 71, 140, 181, 129, 34, 1, 1, 1, 9, 36, 105, 251, 431, 476, 277, 55, 1, 1, 1, 10, 45, 148, 413, 882, 1326, 1252, 595, 89, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Examples

			Rows begin
  1, 1, 1,  1,  1,   1, ...
  1, 1, 2,  3,  5,   8, ...
  1, 1, 3,  6, 13,  28, ...
  1, 1, 4, 10, 26,  69, ...
  1, 1, 5, 15, 45, 140, ...
Row 1 is the 0-section of 1/(1-x-x)   (A000079);
Row 2 is the 1-section of 1/(1-x-x^2) (A000045);
Row 3 is the 2-section of 1/(1-x-x^3) (A000930);
Row 4 is the 3-section of 1/(1-x-x^4) (A003269);
etc.
		

Crossrefs

Sums of antidiagonals are A099236.
Columns include A000217, A008778.
Rows include A000045, A002478, A099234, A099235.
Main diagonal gives A099237.
Cf. A099238.

Formula

Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).

A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.

Original entry on oeis.org

1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
It appears that a(n) == 1 (mod 4) and a(5*n+2) == 0 (mod 5) for all n. More generally we conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k.
Let F(x) and G(x) be power series with integer coefficients with G(0) = 1. Define b(n) = n! * [x^n] F(x)*exp(x*G(x)^n). Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1, G(x) = 1 + x. Cf. A278070. (End)

Crossrefs

Main diagonal of A361277.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);

Formula

a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023

A362079 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^n)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 10, 0, 1, 4, 12, 28, 45, 0, 1, 5, 18, 55, 145, 251, 0, 1, 6, 25, 92, 315, 896, 1624, 0, 1, 7, 33, 140, 571, 2106, 6328, 11908, 0, 1, 8, 42, 200, 930, 4076, 15946, 50212, 97545, 0, 1, 9, 52, 273, 1410, 7026, 32718, 134730, 441489, 880660, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1, ...
  0,   1,   2,    3,    4,    5, ...
  0,   3,   7,   12,   18,   25, ...
  0,  10,  28,   55,   92,  140, ...
  0,  45, 145,  315,  571,  930, ...
  0, 251, 896, 2106, 4076, 7026, ...
		

Crossrefs

Columns k=0..3 give A000007, A099237, A362084, A362085.
Main diagonal gives A362080.
Cf. A362078.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(j+k-1, j)*binomial(n*j, n-j));

Formula

T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-k,j) * binomial(n*j,n-j) = Sum_{j=0..n} binomial(j+k-1,j) * binomial(n*j,n-j).

A157114 Triangle T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k), read by rows.

Original entry on oeis.org

2, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 56, 16, 1, 1, 25, 225, 225, 25, 1, 1, 36, 771, 1632, 771, 36, 1, 1, 49, 2597, 9261, 9261, 2597, 49, 1, 1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1, 1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1, 1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			Triangle begins as:
  2;
  1,   1;
  1,   4,      1;
  1,   9,      9,       1;
  1,  16,     56,      16,       1;
  1,  25,    225,     225,      25,       1;
  1,  36,    771,    1632,     771,      36,       1;
  1,  49,   2597,    9261,    9261,    2597,      49,       1;
  1,  64,   9136,   52384,   71920,   52384,    9136,      64,      1;
  1,  81,  33777,  320814,  525987,  525987,  320814,   33777,     81,   1;
  1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1;
		

Crossrefs

Cf. A099237.

Programs

  • Magma
    A157114:= func< n,k | Binomial(n*k, n-k) + Binomial(n*(n-k), k) >;
    [A157114(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Maple
    A157114:= (n,k) -> binomial(n*k, n-k) + binomial(n*(n-k), k);
    seq(seq(A157114(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Binomial[n*k, n-k], Binomial[n*(n-k), k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A157114(n,k): return binomial(n*k, n-k) + binomial(n*(n-k), k)
    flatten([[A157114(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k).
Sum_{k=0..n} T(n,k) = 2*A099237(n). - G. C. Greubel, Mar 09 2021

Extensions

Edited by G. C. Greubel, Mar 09 2021

A299044 G.f. Sum_{n>=0} Series_Reversion( x/(1+x)^n )^n.

Original entry on oeis.org

1, 1, 2, 6, 25, 129, 784, 5472, 42993, 374190, 3564176, 36808647, 409067204, 4861490200, 61457674398, 822732344816, 11618029697489, 172476856415121, 2683881876383377, 43660291710726058, 740764460615030663, 13080604188895285878, 239939914279952537597, 4564083798329838120034, 89886989241387131773525, 1830230258908641519168564
Offset: 0

Views

Author

Paul D. Hanna, Feb 18 2018

Keywords

Comments

Antidiagonal sums of square table A299427.

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 129*x^5 + 784*x^6 + 5472*x^7 + 42993*x^8 + 374190*x^9 + 3564176*x^10 + ...
such that
A(x) = 1 + x*R(x,1) + x^2*R(x,2)^4 + x^3*R(x,3)^9 + x^4*R(x,4)^16 + x^5*R(x,5)^25 + x^6*R(x,6)^36 + ...
where series R(x,n) = 1 + x*R(x,n)^n begin:
R(x,1) = 1 + x + x^2 + x^3 + x^4 + x^5 + ...
R(x,2) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ...
R(x,3) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ...
R(x,4) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ...
R(x,5) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + ...
R(x,6) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + ...
...
and series R(x,n)^(n^2) begin:
R(x,1) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...
R(x,2)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + 572*x^5  + ...
R(x,3)^9 = 1 + 9*x + 63*x^2 + 408*x^3 + 2565*x^4 + 15939*x^5 + ...
R(x,4)^16 = 1 + 16*x + 184*x^2 + 1872*x^3 + 17980*x^4 + 167552*x^5 + ...
R(x,5)^25 = 1 + 25*x + 425*x^2 + 6175*x^3 + 82775*x^4 + 1059380*x^5 + ...
R(x,6)^36 = 1 + 36*x + 846*x^2 + 16536*x^3 + 292581*x^4 + 4874688*x^5 + ...
...
demonstrating that A(x) = Sum_{n>=1} x^n * R(x,n)^(n^2).
		

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_] := Sum[Binomial[n*(n-k), k]*(n-k)/n, {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 23 2018 *)
  • PARI
    {a(n) = my(A,Ox=x^2*O(x^n)); A = sum(m=0,n+1, serreverse( x/(1+x +Ox)^m +Ox)^m ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1, sum(k=0,n, binomial(n*(n-k),k) * (n-k)/n ) )}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions.
(1) A(x) = Sum_{n>=0} Series_Reversion( x/(1+x)^n )^n.
(2) A(x) = Sum_{n>=1} x^n * R(x,n)^(n^2), where
(2.a) R(x,n) = 1 + x*R(x,n)^n,
(2.b) R(x,n)^n = Series_Reversion( x/(1+x)^n ) / x,
(2.c) R(x,n)^n = Sum_{k>=0} C(n*(k+1), k)/(k+1) * x^k;
(2.d) R(x,n)^(n^2) = Sum_{k>=0} C(n*(n+k), k) * n/(n+k) * x^k.
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n*(n-k), k) * (n-k)/n.
a(n)^(1/n) ~ n^(n/w) * (n+1-w)^(1 - (n+1)/w) * (w-1)^(1/w - 1), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Feb 19 2018

A362080 a(n) = [x^n] 1/(1 - x*(1+x)^n)^n.

Original entry on oeis.org

1, 1, 7, 55, 571, 7026, 98925, 1562219, 27214867, 516646333, 10589130223, 232574622116, 5440521381816, 134859301929873, 3527034780915985, 96965997588549555, 2793286163779275779, 84076751617833902070, 2637677096916448507104
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Crossrefs

Main diagonal of A362078.
Main diagonal of A362079.
Cf. A099237.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n*k, n-k));

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(-n,k) * binomial(n*k,n-k) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n*k,n-k).

A362084 a(n) = Sum_{k=0..n} (-1)^k * binomial(-2,k) * binomial(n*k,n-k).

Original entry on oeis.org

1, 2, 7, 28, 145, 896, 6328, 50212, 441489, 4248370, 44306306, 496991848, 5959111223, 75977511442, 1025441134747, 14594189335496, 218290221112929, 3421314388169988, 56043004143343843, 957209642080023286, 17011439135301438016, 313980693855333453740
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Crossrefs

Column k=2 of A362079.
Cf. A099237.

Programs

  • PARI
    a(n) = sum(k=0, n, (k+1)*binomial(n*k, n-k));

Formula

a(n) = Sum_{k=0..n} (k+1) * binomial(n*k,n-k).
a(n) = [x^n] 1/(1 - x*(1+x)^n)^2.

A361829 a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n*k,n-k).

Original entry on oeis.org

1, 2, 10, 62, 486, 4482, 47106, 553226, 7152438, 100644194, 1527758136, 24839853326, 430045385424, 7888706328934, 152685931935634, 3106864307092950, 66253232332628166, 1476558925897693698, 34307420366092350048, 829217371825336147142
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Main diagonal of A361830.

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n*k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 26 2023 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*binomial(n*k, n-k));

Formula

a(n) = [x^n] 1/sqrt(1 - 4*x*(1+x)^n).
log(a(n)) ~ n*(log(n) + (2*log(2) - 1)/log(n) - (1 - 1/log(n))*log(log(n) - 1)). - Vaclav Kotesovec, Mar 26 2023

A359842 a(n) = Sum_{k=0..n} binomial(n*k,n+k).

Original entry on oeis.org

1, 0, 1, 90, 13690, 3443275, 1308315371, 701623884514, 505274768721332, 470638793249281593, 550707386335951810915, 790898932162231992184327, 1367864138835420575101044139, 2804370191530797723173615407860, 6725366044028696102055907486691290
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 15 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc (n) option remember; add(binomial(n*k, n+k), k = 0..n) end:
    seq(a(n), n = 0..20); # Peter Bala, Jan 16 2023
  • Mathematica
    Table[Sum[Binomial[n*k, n+k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ binomial(n^2,2*n).
a(n) ~ exp(2*n-2) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(2*n+1)).
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 0 (mod 2^(k-1)) and a(3^k) == 0 (mod 3^(k+2)) for k >= 2; a(p^k) == 0 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n+k). Cf. A099237. (End)

A361836 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n*k,n-k).

Original entry on oeis.org

1, 1, -1, -2, 13, -29, -80, 1268, -7351, 13276, 245746, -3632793, 27451743, -63909390, -1752952501, 34899085656, -370619158447, 1779155624299, 23668687715473, -780307293795152, 12058261763444876, -107734052276914986, -180664717708949253, 30298196609011736398
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n*k, n-k));

Formula

a(n) = [x^n] 1/(1 - x*(1-x)^n).
Showing 1-10 of 11 results. Next