cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099237 a(n) = Sum_{k=0..n} binomial(n*(n-k), k).

Original entry on oeis.org

1, 1, 3, 10, 45, 251, 1624, 11908, 97545, 880660, 8664546, 92096731, 1050304775, 12778138842, 165033693175, 2253204163256, 32401745953105, 489207829112931, 7733130368443057, 127664099576228184, 2196149923000824756
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Main diagonal of A099233.

Crossrefs

Programs

Formula

From Vaclav Kotesovec, Feb 19 2018: (Start)
a(n)^(1/n) ~ n^(n/w) * (n+1-w)^(1 - (n+1)/w) * (w-1)^(1/w - 1), where w = LambertW(exp(1)*n),
a(n)^(1/n) ~ n/log(n), but the convergence is too slow. (End)
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 1 (mod 2^k) and a(3^k) == 1 (mod 3^(k+1)); a(p^k) == 1 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n-k). Cf. A359842. (End)

A157117 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k), read by rows.

Original entry on oeis.org

2, 1, 1, 1, 8, 1, 1, 131, 131, 1, 1, 8204, 29216, 8204, 1, 1, 2097187, 44136233, 44136233, 2097187, 1, 1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1, 1, 8796093022411, 150092195453359483, 288159195861579519, 288159195861579519, 150092195453359483, 8796093022411, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			  2;
  1,          1;
  1,          8,            1;
  1,        131,          131,            1;
  1,       8204,        29216,         8204,            1;
  1,    2097187,     44136233,     44136233,      2097187,          1;
  1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1;
		

Crossrefs

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    f:= func< n,k | k le n select Eulerian(n*k+1,n-k) else Eulerian(n*(n-k)+1, k) >;
    A157117:= func< n,k | f(n,k) + f(n,n-k) >;
    [A157117(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
    
  • Mathematica
    f[n_, k_]:= If[k<=n, Eulerian[n*k+1,n-k], Eulerian[n*(n-k)+1,k]];
    T[n_, k_]:= f[n,k] + f[n,n-k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
  • Sage
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    def f(n,k): return Eulerian(n*k+1,n-k) if (kA157117(n,k): return f(n,k) + f(n,n-k)
    flatten([[A157117(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k).
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 11 2022

A157118 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.

Original entry on oeis.org

2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			Triangle begins as:
  2;
  1,    1;
  1,    6,        1;
  1,   27,       27,         1;
  1,   88,      672,        88,         1;
  1,  225,     9150,      9150,       225,         1;
  1,  486,    98385,    395352,     98385,       486,        1;
  1,  931,  1126951,  11748681,  11748681,   1126951,      931,    1;
  1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
		

Crossrefs

Programs

  • Magma
    A001263:= func< n,k | Binomial(n-1,k-1)*Binomial(n,k)/(n-k+1) >;
    f:= func< n,k | k le n select A001263(n*k+1,n-k+1) else A001263(n*(n-k)+1, k+1) >;
    A157118:= func< n,k | n eq 1 select 1 else f(n,k) + f(n,n-k) >;
    [A157118(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
    
  • Mathematica
    A001263[n_, k_]:= Binomial[n-1,k-1]*Binomial[n,k]/(n-k+1);
    f[n_, k_]:= If[k<=n, A001263[n*k+1,n-k+1], A001263[n*(n-k)+1,k+1]];
    T[n_, k_]:= If[n==1, 1, f[n,k] + f[n,n-k]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A001263(n,k): return binomial(n-1,k-1)*binomial(n,k)/(n-k+1)
    def f(n,k): return A001263(n*k+1,n-k+1) if (kA001263(n*(n-k)+1, k+1)
    def A157118(n,k): return 1 if (n==1) else f(n,k) + f(n,n-k)
    flatten([[A157118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 11 2022
Showing 1-3 of 3 results.