A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
Original entry on oeis.org
1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0
-
a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))
A361834
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-1)^(n-j) * binomial(2*j,j) * binomial(k*j,n-j).
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 4, 20, 1, 2, 2, 8, 70, 1, 2, 0, -2, 16, 252, 1, 2, -2, -10, -14, 32, 924, 1, 2, -4, -16, -22, -32, 64, 3432, 1, 2, -6, -20, -10, 12, -30, 128, 12870, 1, 2, -8, -22, 20, 118, 174, 64, 256, 48620, 1, 2, -10, -22, 66, 242, 304, 344, 346, 512, 184756
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 4, 2, 0, -2, -4, -6, ...
20, 8, -2, -10, -16, -20, -22, ...
70, 16, -14, -22, -10, 20, 66, ...
252, 32, -32, 12, 118, 242, 342, ...
924, 64, -30, 174, 304, 82, -678, ...
-
T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(2*j, j)*binomial(k*j, n-j));
A361839
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 21, 24, 27, 30, 33, ...
126, 162, 201, 243, 288, 336, ...
945, 1341, 1809, 2352, 2973, 3675, ...
7371, 11529, 16893, 23607, 31818, 41676, ...
-
T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));
A361829
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n*k,n-k).
Original entry on oeis.org
1, 2, 10, 62, 486, 4482, 47106, 553226, 7152438, 100644194, 1527758136, 24839853326, 430045385424, 7888706328934, 152685931935634, 3106864307092950, 66253232332628166, 1476558925897693698, 34307420366092350048, 829217371825336147142
Offset: 0
-
Table[Sum[Binomial[2*k,k]*Binomial[n*k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 26 2023 *)
-
a(n) = sum(k=0, n, binomial(2*k, k)*binomial(n*k, n-k));
Showing 1-4 of 4 results.