A361816
Expansion of 1/sqrt(1 - 4*x*(1-x)^3).
Original entry on oeis.org
1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0
A361835
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n*k,n-k).
Original entry on oeis.org
1, 2, 2, -10, -10, 242, -678, -7054, 88342, -207646, -6015904, 88310862, -312514816, -8847633338, 184252541514, -1269592841970, -17662739133178, 634109114537218, -7914500471718552, -18165019012117450, 2936604063787679650, -62899139815867627378
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(n*k, n-k));
A361840
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 - x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 15, 126, 1, 3, 12, 90, 945, 1, 3, 9, 57, 585, 7371, 1, 3, 6, 27, 297, 3969, 58968, 1, 3, 3, 0, 78, 1629, 27657, 480168, 1, 3, 0, -24, -75, 207, 9216, 196290, 3961386, 1, 3, -3, -45, -165, -438, 459, 53217, 1411965, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 15, 12, 9, 6, 3, ...
126, 90, 57, 27, 0, -24, ...
945, 585, 297, 78, -75, -165, ...
7371, 3969, 1629, 207, -438, -444, ...
-
T(n, k) = (-1)^n*sum(j=0, n, 9^j*binomial(-1/3, j)*binomial(k*j, n-j));
A361830
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
6, 8, 10, 12, 14, 16, ...
20, 32, 46, 62, 80, 100, ...
70, 136, 226, 342, 486, 660, ...
252, 592, 1136, 1932, 3030, 4482, ...
-
T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));
Showing 1-4 of 4 results.