A361843
Expansion of 1/(1 - 9*x*(1-x))^(1/3).
Original entry on oeis.org
1, 3, 15, 90, 585, 3969, 27657, 196290, 1411965, 10261485, 75183147, 554480316, 4111617510, 30628393110, 229048769790, 1718666596692, 12933847045701, 97584913269675, 737953856289675, 5591915004100950, 42450848142844995, 322796964495941235
Offset: 0
-
A361843 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9): seq(simplify(A361843(n)), n = 0..21); # Peter Luschny, Mar 27 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x))^(1/3))
A361844
Expansion of 1/(1 - 9*x*(1-x)^2)^(1/3).
Original entry on oeis.org
1, 3, 12, 57, 297, 1629, 9216, 53217, 311796, 1846818, 11032416, 66356712, 401364531, 2439135585, 14882263002, 91116281565, 559528781697, 3445002647847, 21260140172244, 131474746842345, 814564464082263, 5055177167348463, 31420067723814780
Offset: 0
-
A361844 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3,
-n*2/3], [1/2 - n, 2/3 - n], 3/4):
seq(simplify(A361844(n)), n = 0..22); # Peter Luschny, Mar 27 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^2)^(1/3))
A361845
Expansion of 1/(1 - 9*x*(1-x)^3)^(1/3).
Original entry on oeis.org
1, 3, 9, 27, 78, 207, 459, 567, -1926, -20763, -120123, -569349, -2410200, -9379449, -33818715, -112292001, -335018295, -837341388, -1317232530, 2358000072, 35974607355, 228270292803, 1148026536963, 5094839173779, 20667058966044, 77501033284779
Offset: 0
-
a[n_]:=(-9)^n*Binomial[-1/3, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 2/3-n, 2/3-n}, 2^8/3^5]; Array[a,26,0] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^3)^(1/3))
A361839
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 21, 24, 27, 30, 33, ...
126, 162, 201, 243, 288, 336, ...
945, 1341, 1809, 2352, 2973, 3675, ...
7371, 11529, 16893, 23607, 31818, 41676, ...
-
T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));
A361847
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(n*k,n-k).
Original entry on oeis.org
1, 3, 12, 27, -75, -444, 4734, 11532, -466782, 1626750, 50347410, -708889296, -2196754992, 179878246239, -1795732735128, -24691325878980, 953903679982809, -7684914725016600, -226465559200630566, 7742131606464606525, -58889021552013912990
Offset: 0
-
a(n) = (-1)^n*sum(k=0, n, 9^k*binomial(-1/3, k)*binomial(n*k, n-k));
Showing 1-5 of 5 results.