cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A361843 Expansion of 1/(1 - 9*x*(1-x))^(1/3).

Original entry on oeis.org

1, 3, 15, 90, 585, 3969, 27657, 196290, 1411965, 10261485, 75183147, 554480316, 4111617510, 30628393110, 229048769790, 1718666596692, 12933847045701, 97584913269675, 737953856289675, 5591915004100950, 42450848142844995, 322796964495941235
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=1 of A361840.
Cf. A004987.

Programs

  • Maple
    A361843 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9): seq(simplify(A361843(n)), n = 0..21); # Peter Luschny, Mar 27 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x))^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) - (3*n-4)*a(n-2) ) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(k,n-k).
a(n) = A004987(n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9). - Peter Luschny, Mar 27 2023
a(n) ~ 3^n * phi^(2*n + 2/3) / (Gamma(1/3) * 5^(1/6) * n^(2/3)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 29 2023

A361844 Expansion of 1/(1 - 9*x*(1-x)^2)^(1/3).

Original entry on oeis.org

1, 3, 12, 57, 297, 1629, 9216, 53217, 311796, 1846818, 11032416, 66356712, 401364531, 2439135585, 14882263002, 91116281565, 559528781697, 3445002647847, 21260140172244, 131474746842345, 814564464082263, 5055177167348463, 31420067723814780
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=2 of A361840.

Programs

  • Maple
    A361844 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3,
    -n*2/3], [1/2 - n, 2/3 - n], 3/4):
    seq(simplify(A361844(n)), n = 0..22); # Peter Luschny, Mar 27 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^2)^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) - 2*(3*n-4)*a(n-2) + (3*n-6)*a(n-3) ) for n > 2.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(2*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], 3/4). - Peter Luschny, Mar 27 2023

A361845 Expansion of 1/(1 - 9*x*(1-x)^3)^(1/3).

Original entry on oeis.org

1, 3, 9, 27, 78, 207, 459, 567, -1926, -20763, -120123, -569349, -2410200, -9379449, -33818715, -112292001, -335018295, -837341388, -1317232530, 2358000072, 35974607355, 228270292803, 1148026536963, 5094839173779, 20667058966044, 77501033284779
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=3 of A361840.
Cf. A361816.

Programs

  • Mathematica
    a[n_]:=(-9)^n*Binomial[-1/3, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 2/3-n, 2/3-n}, 2^8/3^5]; Array[a,26,0] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^3)^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) - 3*(3*n-4)*a(n-2) + 3*(3*n-6)*a(n-3) - (3*n-8)*a(n-4) ) for n > 3.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(3*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 2/3-n, 2/3-n], 2^8/3^5). - Stefano Spezia, Jul 11 2024

A361839 Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).

Original entry on oeis.org

1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
     1,     1,     1,     1,     1,     1, ...
     3,     3,     3,     3,     3,     3, ...
    18,    21,    24,    27,    30,    33, ...
   126,   162,   201,   243,   288,   336, ...
   945,  1341,  1809,  2352,  2973,  3675, ...
  7371, 11529, 16893, 23607, 31818, 41676, ...
		

Crossrefs

Columns k=0..3 give A004987, A180400, A361841, A361842.
Main diagonal gives A361846.

Programs

  • PARI
    T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));

Formula

n*T(n,k) = 3 * Sum_{j=0..k} binomial(k,j)*(3*n-2-2*j)*T(n-1-j,k) for n > k.
T(n,k) = Sum_{j=0..n} (-9)^j * binomial(-1/3,j) * binomial(k*j,n-j).

A361847 a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(n*k,n-k).

Original entry on oeis.org

1, 3, 12, 27, -75, -444, 4734, 11532, -466782, 1626750, 50347410, -708889296, -2196754992, 179878246239, -1795732735128, -24691325878980, 953903679982809, -7684914725016600, -226465559200630566, 7742131606464606525, -58889021552013912990
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2023

Keywords

Crossrefs

Main diagonal of A361840.

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, 9^k*binomial(-1/3, k)*binomial(n*k, n-k));

Formula

a(n) = [x^n] 1/(1 - 9*x*(1-x)^n)^(1/3).
Showing 1-5 of 5 results.