cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099233 Square array read by antidiagonals associated to sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 8, 1, 1, 1, 6, 15, 26, 28, 13, 1, 1, 1, 7, 21, 45, 69, 60, 21, 1, 1, 1, 8, 28, 71, 140, 181, 129, 34, 1, 1, 1, 9, 36, 105, 251, 431, 476, 277, 55, 1, 1, 1, 10, 45, 148, 413, 882, 1326, 1252, 595, 89, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Examples

			Rows begin
  1, 1, 1,  1,  1,   1, ...
  1, 1, 2,  3,  5,   8, ...
  1, 1, 3,  6, 13,  28, ...
  1, 1, 4, 10, 26,  69, ...
  1, 1, 5, 15, 45, 140, ...
Row 1 is the 0-section of 1/(1-x-x)   (A000079);
Row 2 is the 1-section of 1/(1-x-x^2) (A000045);
Row 3 is the 2-section of 1/(1-x-x^3) (A000930);
Row 4 is the 3-section of 1/(1-x-x^4) (A003269);
etc.
		

Crossrefs

Sums of antidiagonals are A099236.
Columns include A000217, A008778.
Rows include A000045, A002478, A099234, A099235.
Main diagonal gives A099237.
Cf. A099238.

Formula

Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).

A360082 a(n) = Sum_{k=0..n} binomial(4*k,n-k) * Catalan(k).

Original entry on oeis.org

1, 1, 6, 27, 134, 709, 3892, 22004, 127250, 749230, 4476386, 27071344, 165398868, 1019405720, 6330482488, 39571612357, 248796862550, 1572300095758, 9981970108384, 63633339713190, 407162295120570, 2614059813642256, 16834457481559076
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^4)))

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x * (1+x)^4 * A(x)).
G.f.: 2 / (1 + sqrt( 1 - 4*x*(1+x)^4 )).

A360088 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k).

Original entry on oeis.org

1, -1, -3, 1, 13, 4, -49, -46, 165, 284, -476, -1417, 1003, 6220, -110, -24644, -14831, 88184, 113224, -278288, -619744, 715647, 2891977, -1036173, -12068353, -3381661, 45588556, 41600921, -154355594, -259984429, 448828716, 1305250324, -964837159, -5754843123
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(4*k, n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1+x*(1+x)^4))

Formula

a(n) = -a(n-1) - 4*a(n-2) - 6*a(n-3) - 4*a(n-4) - a(n-5).
G.f.: 1/(1 + x*(1+x)^4).

A360090 a(n) = Sum_{k=0..n} binomial(5*k,n-k).

Original entry on oeis.org

1, 1, 6, 21, 71, 251, 882, 3088, 10829, 37975, 133146, 466852, 1636944, 5739647, 20125051, 70564951, 247423522, 867546829, 3041899638, 10665883415, 37398034921, 131129599227, 459782762029, 1612146986543, 5652708454881, 19820223058176, 69496108849357
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Comments

The number of ways to place non-overlapping Young diagrams of shape (2,1,1,1,1) on an 9 by n rectangle. - Per Alexandersson, Jul 01 2025

Crossrefs

Programs

  • Maple
    seq(add(binomial(5*k,n-k),k=0..n), n=0..50); # Robert Israel, Jul 09 2025
  • PARI
    a(n) = sum(k=0, n, binomial(5*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x*(1+x)^5))

Formula

a(n) = a(n-1) + 5*a(n-2) + 10*a(n-3) + 10*a(n-4) + 5*a(n-5) + a(n-6).
G.f.: 1/(1 - x*(1+x)^5).

A362238 Expansion of e.g.f.: 1/(1 - x*(1+x)^x).

Original entry on oeis.org

1, 1, 2, 12, 60, 460, 3900, 39438, 456288, 5896224, 85230000, 1349017560, 23353941600, 437432418696, 8828284404576, 190867622500800, 4401749312069760, 107859517575659520, 2798352667710645120, 76636669899079699776, 2209235394261812751360
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*(1+x)^x)))

Formula

a(n) = n! * Sum_{i=0..n} Sum_{j=0..n-i} i^j * Stirling1(n-i-j,j)/(n-i-j)!.

A366222 G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^4*A(x)^3.

Original entry on oeis.org

1, 1, 7, 42, 287, 2114, 16338, 130802, 1075355, 9025656, 77021482, 666267502, 5829209046, 51492030953, 458612500526, 4113879873624, 37133888342707, 337041718357465, 3074153880004188, 28162578841220534, 259020296989987934, 2390818256963083305
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k,n-k) * binomial(3*k,k)/(2*k+1).
Showing 1-6 of 6 results.