A099241 Sums of antidiagonals of A099239.
1, 2, 4, 9, 22, 57, 155, 441, 1311, 4066, 13130, 44046, 153144, 550706, 2044248, 7819897, 30779570, 124487688, 516723174, 2198726181, 9581247648, 42717268934, 194688593966, 906331074605, 4306472500778, 20871165469241, 103106015116437
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A099239.
Programs
-
Magma
A099239:= func< n,k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >; [(&+[A099239(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 09 2021
-
Mathematica
A099239[n_, k_]:= Sum[Binomial[k*(n-k) -(k-1)*(j-1), j], {j,0,n-k}]; Table[Sum[A099239[n, k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
Sage
def A099239(n,k): return sum(binomial(k*(n-k)-(k-1)*(j-1), j) for j in (0..n-k)) [sum(A099239(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j).