cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099241 Sums of antidiagonals of A099239.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 155, 441, 1311, 4066, 13130, 44046, 153144, 550706, 2044248, 7819897, 30779570, 124487688, 516723174, 2198726181, 9581247648, 42717268934, 194688593966, 906331074605, 4306472500778, 20871165469241, 103106015116437
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Crossrefs

Cf. A099239.

Programs

  • Magma
    A099239:= func< n,k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >;
    [(&+[A099239(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    A099239[n_, k_]:= Sum[Binomial[k*(n-k) -(k-1)*(j-1), j], {j,0,n-k}];
    Table[Sum[A099239[n, k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A099239(n,k): return sum(binomial(k*(n-k)-(k-1)*(j-1), j) for j in (0..n-k))
    [sum(A099239(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j).