A099272 Unsigned member r=-14 of the family of Chebyshev sequences S_r(n) defined in A092184.
0, 1, 14, 225, 3584, 57121, 910350, 14508481, 231225344, 3685097025, 58730327054, 936000135841, 14917271846400, 237740349406561, 3788928318658574, 60385112749130625, 962372875667431424, 15337580897929772161, 244438921491208923150, 3895685162961412998241
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..831
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (15, 15, -1).
Crossrefs
Cf. A001081.
Programs
-
Maple
f:= n -> (orthopoly[T](n,8)-(-1)^n)/9: map(f, [$0..20]); # Robert Israel, Jun 04 2018
-
Mathematica
CoefficientList[Series[x (1-x)/(1-15 x-15 x^2+x^3),{x,0,33}],x] (* Vincenzo Librandi, Jun 05 2018 *)
Formula
a(n) = (T(n, 8)-(-1)^n)/9, with Chebyshev's polynomials of the first kind evaluated at x=8: T(n, 8)=A001081(n)=((8+3*sqrt(7))^n + (8-3*sqrt(7))^n)/2.
a(n) = 16*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n) = 15*a(n-1) + 15*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=14.
G.f.: x*(1-x)/((1+x)*(1-16*x+x^2)) = x*(1-x)/(1-15*x-15*x^2+x^3) (from the Stephan link, see A092184).
Comments