A099303 Greatest integer x such that x' = n, or 0 if there is no such x, where x' is the arithmetic derivative of x.
0, 0, 4, 6, 9, 10, 15, 14, 25, 0, 35, 22, 49, 26, 55, 0, 77, 34, 91, 38, 121, 0, 143, 46, 169, 27, 187, 0, 221, 58, 247, 62, 289, 0, 323, 0, 361, 74, 391, 42, 437, 82, 403, 86, 529, 0, 551, 94, 589, 63, 667, 0, 713, 106, 703, 0, 841, 70, 899, 118, 961, 122, 943, 0, 1073, 0
Offset: 2
Keywords
References
- See A003415
Links
- T. D. Noe, Table of n, a(n) for n=2..1000
Crossrefs
Programs
-
Mathematica
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Table[x=Max[Flatten[Position[d1, n]]]; If[x>-Infinity, x, 0], {n, 2, 400}]
-
Python
from sympy import factorint def A099303(n): for m in range(n**2>>2,0,-1): if sum((m*e//p for p,e in factorint(m).items())) == n: return m return 0 # Chai Wah Wu, Sep 12 2022
Comments