A099322 An inverse Catalan transform of J(3n)/J(3).
0, 1, 6, 43, 291, 1992, 13595, 92845, 633966, 4329023, 29560367, 201850896, 1378323999, 9411785201, 64267689006, 438847231427, 2996636337771, 20462312853336, 139725412120339, 954104794142789, 6515035056168654
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,1,-16,8).
Crossrefs
Cf. A001045.
Programs
-
Mathematica
LinearRecurrence[{7,1,-16,8},{0,1,6,43},30] (* Harvey P. Dale, Jul 19 2016 *)
Formula
G.f.: x(1-x)/(1-7x-x^2+16x^3-8x^4);
a(n) = 7a(n-1) + a(n-2) - 16a(n-3) + 8a(n-4);
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*J(3n-3k)/J(3).
Comments