cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099390 Array T(m,n) read by antidiagonals: number of domino tilings (or dimer tilings) of the m X n grid (or m X n rectangle), for m>=1, n>=1.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 5, 0, 5, 0, 1, 8, 11, 11, 8, 1, 0, 13, 0, 36, 0, 13, 0, 1, 21, 41, 95, 95, 41, 21, 1, 0, 34, 0, 281, 0, 281, 0, 34, 0, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 0, 89, 0, 2245, 0, 6728, 0, 2245, 0, 89, 0, 1, 144, 571, 6336, 14824, 31529, 31529, 14824, 6336, 571, 144, 1
Offset: 1

Views

Author

Ralf Stephan, Oct 16 2004

Keywords

Comments

There are many versions of this array (or triangle) in the OEIS. This is the main entry, which ideally collects together all the references to the literature and to other versions in the OEIS. But see A004003 for further information. - N. J. A. Sloane, Mar 14 2015

Examples

			0,  1,  0,   1,    0,    1, ...
1,  2,  3,   5,    8,   13, ...
0,  3,  0,  11,    0,   41, ...
1,  5, 11,  36,   95,  281, ...
0,  8,  0,  95,    0, 1183, ...
1, 13, 41, 281, 1183, 6728, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • P. E. John, H. Sachs, and H. Zernitz, Problem 5. Domino covers in square chessboards, Zastosowania Matematyki (Applicationes Mathematicae) XIX 3-4 (1987), 635-641.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 2nd ed., pp. 547 and 570.
  • Darko Veljan, Kombinatorika: s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

See A187596 for another version (with m >= 0, n >= 0). See A187616 for a triangular version. See also A187617, A187618.
See also A004003 for more literature on the dimer problem.
Main diagonal is A004003.

Programs

  • Maple
    (Maple code for the even-numbered rows from N. J. A. Sloane, Mar 15 2015. This is not totally satisfactory since it uses floating point. However, it is useful for getting the initial values quickly.)
    Digits:=100;
    p:=evalf(Pi);
    z:=proc(h,d) global p; evalf(cos( h*p/(2*d+1) )); end;
    T:=proc(m,n) global z; round(mul( mul( 4*z(h,m)^2+4*z(k,n)^2, k=1..n), h=1..m)); end;
    [seq(T(1,n),n=0..10)]; # A001519
    [seq(T(2,n),n=0..10)]; # A188899
    [seq(T(3,n),n=0..10)]; # A256044
    [seq(T(n,n),n=0..10)]; # A004003
  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2*(2+Cos[2j*Pi/(m+1)]+Cos[2k*Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    Flatten[Table[Round[T[m-n+1, n]], {m, 1, 12}, {n, 1, m}]] (* Jean-François Alcover, Nov 25 2011, updated May 28 2022 *)
  • PARI
    {T(n, k) = sqrtint(abs(polresultant(polchebyshev(n, 2, x/2), polchebyshev(k, 2, I*x/2))))} \\ Seiichi Manyama, Apr 13 2020

Formula

T(m, n) = Product_{j=1..ceiling(m/2)} Product_{k=1..ceiling(n/2)} (4*cos(j*Pi/(m+1))^2 + 4*cos(k*Pi/(n+1))^2).

Extensions

Old link fixed and new link added by Frans J. Faase, Feb 04 2009
Entry edited by N. J. A. Sloane, Mar 15 2015