cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099462 Expansion of x/(1 - 4*x^2 - 4*x^3).

Original entry on oeis.org

0, 1, 0, 4, 4, 16, 32, 80, 192, 448, 1088, 2560, 6144, 14592, 34816, 82944, 197632, 471040, 1122304, 2674688, 6373376, 15187968, 36192256, 86245376, 205520896, 489750528, 1167065088, 2781085696, 6627262464, 15792603136, 37633392640
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Binomial transform is A099463.

Crossrefs

Cf. A099463.

Programs

  • Magma
    [n le 3 select (1+(-1)^n)/2 else 4*(Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Nov 18 2021
    
  • Mathematica
    LinearRecurrence[{0,4,4}, {0,1,0}, 40] (* G. C. Greubel, Nov 18 2021 *)
  • Sage
    def a(n): return sum( 4^k*binomial(k, n-2*k-1) for k in (0..(n-1)//2) )
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 18 2021

Formula

a(n) = 4*a(n-2) + 4*a(n-3).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(k, n-2*k-1)*4^k.
a(n+1) = Sum_{k=0..floor(n/2)} C((n-k)/2, k)*(1+(-1)^(n-k))*2^(n-k). - Paul Barry, Sep 09 2005