A099470 A sequence generated from the Quadrifoil.
-1, -2, -1, 2, 4, 2, -3, -6, -3, 4, 8, 4, -5, -10, -5, 6, 12, 6, -7, -14, -7, 8, 16, 8, -9, -18, -9, 10, 20, 10, -11, -22, -11, 12, 24, 12, -13, -26, -13, 14, 28, 14, -15, -30, -15, 16, 32, 16, -17, -34, -17, 18, 36, 18, -19, -38, -19, 20, 40, 20, -21, -42
Offset: 1
Examples
a(7) = -3 since M^7 * [1 0 0 0] = [2 4 2 -3].
References
- Piergiorgio Odifreddi, "The Mathematical Century; The 30 Greatest Problems of the Last 100 Years", Princeton University Press, 2000, page 135.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-3,2,-1).
Programs
-
Magma
I:=[-1,-2,-1,2]; [n le 4 select I[n] else 2*Self(n-1)-3*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 09 2016
-
Mathematica
Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2] + KroneckerDelta[#1,#2+1] + KroneckerDelta[#1,#2-1] &, {n,n}], x], x], {n,75}] (* John M. Campbell, Sep 14 2011 *) Table[(3 n Cos[Pi n/3] - Sqrt[3] (3 n + 4) Sin[Pi n/3])/9, {n, 20}] (* Vladimir Reshetnikov, Sep 08 2016 *) LinearRecurrence[{2, -3, 2, -1}, {-1, -2, -1, 2}, 90] (* Vincenzo Librandi, Sep 09 2016 *)
Formula
M = the 4 X 4 companion matrix to the Quadrafoil polynomial x^4 - 2x^3 + 3x^2 - 2x + 1: [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 2 -3 2]. a(n) = rightmost term in M^n * [1 0 0 0].
O.g.f.: -x/(x^2-x+1)^2. a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3)-a(n-4) = -A099254(n-1). - R. J. Mathar, Apr 06 2008, Apr 23 2009
Comments