A099485 A Fibonacci convolution.
1, 2, 5, 14, 37, 96, 251, 658, 1723, 4510, 11807, 30912, 80929, 211874, 554693, 1452206, 3801925, 9953568, 26058779, 68222770, 178609531, 467605822, 1224207935, 3205017984, 8390846017, 21967520066, 57511714181, 150567622478
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2392
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics. 2017, Vol. 41 Issue 6, pp. 849-853.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,-2,3,-1},{1,2,5,14},30] (* Harvey P. Dale, Jul 06 2017 *)
Formula
G.f.: (1-x+x^2)/((1+x^2)*(1-3*x+x^2)).
a(n) = 3*a(n-1)-2*a(n-2)+3*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^n*(2*3^(n-2*k)+0^(n-2*k))/3.
a(n) = Sum_{k=0..n} (0^k-sin(Pi*k/2))*Fibonacci(2*(n-k)+2).
a(n) = (1/6) * (4*Fibonacci(2*n+2) + I^n + (-I)^n). - Ralf Stephan, Dec 04 2004
Also a transformation of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> (1/(1-x+x^2))*G(x/(1-x+x^2)). - Paul Barry, Dec 11 2004
Comments