cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099551 Odd part of n modulo 10. Final digit of A000265(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 1, 3, 3, 7, 5, 1, 7, 9, 9, 5, 1, 1, 3, 3, 5, 3, 7, 7, 9, 5, 1, 1, 3, 7, 5, 9, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 3, 9, 5, 1, 3, 3, 7, 5, 7, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 7, 9, 5, 1, 9, 3, 7, 5, 9, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 1, 3, 3, 7, 5, 3, 7, 9, 9, 5, 1, 1
Offset: 1

Views

Author

Ralf Stephan, Oct 23 2004

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> n/2^padic:-ordp(n,2) mod 10:
    map(f, [$1..200]); # Robert Israel, Aug 10 2018
  • Mathematica
    Mod[Table[Max[Select[Divisors[n],OddQ]],{n,110}],10] (* Harvey P. Dale, Jun 22 2017 *)
    a[n_] := Mod[n / 2^IntegerExponent[n, 2], 10]; Array[a, 100] (* Amiram Eldar, Aug 29 2024 *)
  • PARI
    a(n)=(n>>valuation(n,2))%10 \\ Charles R Greathouse IV, Dec 28 2012

Formula

a(n) = A010879(A000265(n)).
G.f. g(x) satisfies: g(x) = g(x^2) + (x + 3*x^3 + 5*x^5 + 7*x^7 + 9*x^9)/(1-x^10). - Robert Israel, Aug 10 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5. - Amiram Eldar, Aug 29 2024