A330910 a(n-5) is the number of nonempty subsets of {1,2,...,n} such that the difference of successive elements is at least 5.
0, 1, 3, 6, 10, 15, 22, 32, 46, 65, 90, 123, 167, 226, 305, 410, 549, 733, 977, 1301, 1731, 2301, 3056, 4056, 5381, 7137, 9464, 12547, 16631, 22041, 29208, 38703, 51282, 67946, 90021, 119264, 158003, 209322, 277306, 367366, 486670, 644714, 854078, 1131427
Offset: 0
Keywords
Examples
For example, for n=11, a(6) = 22 and the sets are: {1,6}, {1,7}, {1,8}, {1,9}, {1,10}, {1,11}, {2,7}, {2,8}, {2,9}, {2,10}, {2,11}, {3,8}, {3,9}, {3,10}, {3,11}, {4,9}, {4,10}, {4,11}, {5,10}, {5,11}, {6,11}, {1,6,11}.
Formula
Conjectures from Colin Barker, May 17 2020: (Start)
G.f.: x / ((1 - x)^2*(1 - x + x^2)*(1 - x^2 - x^3)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 2*a(n-6) + a(n-7) for n>6.
(End)
Comments