A099563 a(0) = 0; for n > 0, a(n) = final nonzero number in the sequence n, f(n,2), f(f(n,2),3), f(f(f(n,2),3),4),..., where f(n,d) = floor(n/d); the most significant digit in the factorial base representation of n.
0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0
Keywords
Examples
For n=15, f(15,2) = floor(15/2)=7, f(7,3)=2, f(2,4)=0, so a(15)=2. From _Antti Karttunen_, Dec 24 2015: (Start) Example illustrating the role of this sequence in factorial base representation: n A007623(n) a(n) [= the most significant digit]. 0 = 0 0 1 = 1 1 2 = 10 1 3 = 11 1 4 = 20 2 5 = 21 2 6 = 100 1 7 = 101 1 8 = 110 1 9 = 111 1 10 = 120 1 11 = 121 1 12 = 200 2 13 = 201 2 14 = 210 2 15 = 211 2 16 = 220 2 17 = 221 2 18 = 300 3 etc. Note that there is no any upper bound for the size of digits in this representation. (End)
Links
Crossrefs
Programs
-
Mathematica
Table[Floor[n/#] &@ (k = 1; While[(k + 1)! <= n, k++]; k!), {n, 0, 120}] (* Michael De Vlieger, Aug 30 2016 *)
-
PARI
A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); }; \\ Antti Karttunen, Dec 24 2015
-
Python
def a(n): i=2 d=0 while n: d=n%i n=(n - d)//i i+=1 return d print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017, after PARI code
-
Scheme
(define (A099563 n) (let loop ((n n) (i 2)) (let* ((dig (modulo n i)) (next-n (/ (- n dig) i))) (if (zero? next-n) dig (loop next-n (+ 1 i)))))) (definec (A099563 n) (cond ((zero? n) n) ((= 1 (A265333 n)) 1) (else (+ 1 (A099563 (A257684 n)))))) ;; Based on given recurrence, using the memoization-macro definec ;; Antti Karttunen, Dec 24-25 2015
Formula
From Antti Karttunen, Dec 25 2015: (Start)
a(0) = 0; for n >= 1, if A265333(n) = 1 [when n is one of the terms of A265334], a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities. For all n >= 0:
(End)
Extensions
a(0) = 0 prepended and the alternative description added to the name-field by Antti Karttunen, Dec 24 2015
Comments