cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099565 Location of records in A099564.

Original entry on oeis.org

1, 4, 18, 24, 150, 180, 210, 1920, 2160, 2400, 2640, 2880, 40560, 43680, 46800, 49920, 53040, 56160, 59280, 62400, 1375920, 1441440, 1506960, 1572480, 1638000, 1703520, 1769040, 1834560, 1900080, 1965600, 2031120, 2096640, 2162160
Offset: 1

Views

Author

John W. Layman, Oct 25 2004

Keywords

Comments

See {a(n)/n} in A099566.

Examples

			A099564 begins {1,1,1,2,2,1,1,1,1,1,1,2,2,2,2,2,2,3,...}, so the first few records occur at a(1)=1, a(2)=4 and a(3)=18.
		

Crossrefs

A099563 a(0) = 0; for n > 0, a(n) = final nonzero number in the sequence n, f(n,2), f(f(n,2),3), f(f(f(n,2),3),4),..., where f(n,d) = floor(n/d); the most significant digit in the factorial base representation of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

John W. Layman, Oct 22 2004

Keywords

Comments

Records in {a(n)} occur at {1,4,18,96,600,4320,35280,322560,3265920,...}, which appears to be n*n! = A001563(n).
The most significant digit in the factorial expansion of n (A007623). Proof: The algorithm that computes the factorial expansion of n, generates the successive digits by repeatedly dividing the previous quotient with successively larger divisors (the remainders give the digits), starting from n itself and divisor 2. As a corollary we find that A001563 indeed gives the positions of the records. - Antti Karttunen, Jan 01 2007.

Examples

			For n=15, f(15,2) = floor(15/2)=7, f(7,3)=2, f(2,4)=0, so a(15)=2.
From _Antti Karttunen_, Dec 24 2015: (Start)
Example illustrating the role of this sequence in factorial base representation:
   n  A007623(n)       a(n) [= the most significant digit].
   0 =   0               0
   1 =   1               1
   2 =  10               1
   3 =  11               1
   4 =  20               2
   5 =  21               2
   6 = 100               1
   7 = 101               1
   8 = 110               1
   9 = 111               1
  10 = 120               1
  11 = 121               1
  12 = 200               2
  13 = 201               2
  14 = 210               2
  15 = 211               2
  16 = 220               2
  17 = 221               2
  18 = 300               3
  etc.
Note that there is no any upper bound for the size of digits in this representation.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/#] &@ (k = 1; While[(k + 1)! <= n, k++]; k!), {n, 0, 120}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); }; \\ Antti Karttunen, Dec 24 2015
    
  • Python
    def a(n):
        i=2
        d=0
        while n:
            d=n%i
            n=(n - d)//i
            i+=1
        return d
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017, after PARI code
  • Scheme
    (define (A099563 n) (let loop ((n n) (i 2)) (let* ((dig (modulo n i)) (next-n (/ (- n dig) i))) (if (zero? next-n) dig (loop next-n (+ 1 i))))))
    (definec (A099563 n) (cond ((zero? n) n) ((= 1 (A265333 n)) 1) (else (+ 1 (A099563 (A257684 n)))))) ;; Based on given recurrence, using the memoization-macro definec
    ;; Antti Karttunen, Dec 24-25 2015
    

Formula

From Antti Karttunen, Dec 25 2015: (Start)
a(0) = 0; for n >= 1, if A265333(n) = 1 [when n is one of the terms of A265334], a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities. For all n >= 0:
a(A001563(n)) = n. [Sequence works as a left inverse for A001563.]
a(n) = A257686(n) / A048764(n).
(End)

Extensions

a(0) = 0 prepended and the alternative description added to the name-field by Antti Karttunen, Dec 24 2015

A276153 The most significant digit when n is written in primorial base (A049345).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the most significant digit is 4, thus a(24) = 4.
For n=210, which is "10000" in primorial base (as 210 = A002110(4) = 7*5*3*2*1), the most significant digit is 1, thus a(210) = 1.
For n=2100, which could be written "A0000" in primorial base (where A stands for digit "ten", as 2100 = 10*A002110(4)), the most significant value holder is thus 10 and a(2100) = 10. (The first point where this sequence attains a value larger than 9).
		

Crossrefs

Differs from A099563 for the first time at n=24.
Differs from A099564 for the first time at n=210, where a(210)=1, while A099564(210)=7.

Programs

  • Mathematica
    nn = 120; Table[First@ IntegerDigits[n, MixedRadix[Reverse@ Prime@ Range@ PrimePi@ nn]], {n, 0, nn}] (* Michael De Vlieger, Aug 25 2016, Version 10.2 *)
  • Scheme
    (define (A276153 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (dig (modulo n p)) (next-n (/ (- n dig) p))) (if (zero? next-n) dig (loop next-n (+ 1 i))))))

Formula

a(n) = A071178(A276086(n)).

A341356 The most significant digit in A097801-base.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2021

Keywords

Comments

A097801-base uses values 1, 2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*9, 2*3*5*7*9*11, 2*3*5*7*9*11*13, 2*3*5*7*9*11*13*15, ..., for its digit-positions, instead of primorials (A002110), thus up to 1889 = 2*3*5*7*9 - 1 = 9*A002110(4) - 1 its representation is identical with the primorial base A049345. Therefore this sequence differs from A276153 for the first time at n=1890, where a(1890)=1, while A276153(1890)=9, as 1890 = 9*A002110(4).
Therefore this sequence might be produced as a rough approximation of A276153 by naive machine learning/mining algorithms. - Antti Karttunen, Mar 09 2021

Examples

			In A097801-base, where the digit-positions are given by 1 and the terms of A097801 from its term a(1) onward: 2, 6, 30, 210, 1890, 20790, 270270, 4054050, ..., number 29 is expressed as "421" as 29 = 4*6 + 2*2 + 1*1, thus a(29) = 4. In the same base, number 30 is expressed as "1000" as 30 = 1*30, thus a(30) = 1.
Number 1890 = 2*3*5*7*9 is expressed as "100000", thus a(1890) = 1.
		

Crossrefs

Cf. A097801.
Cf. A341513 (sum of digits in the same base), A341514 (number of trailing zeros).
Cf. also A002110, A049345.
Differs from similarly constructed A276153 for the first time at n=1890, where a(1890)=1, while A276153(1890)=9.
Differs from similarly constructed A099564 for the first time at n=210, where a(210)=1, while A099564(210)=7.

Programs

  • Mathematica
    Block[{nn = 105, b}, b = MixedRadix@ NestWhile[Prepend[#1, 2 #2 - 1] & @@ {#, Length[#] + 1} &, {2}, Times @@ # < nn &]; Array[First@ IntegerDigits[#, b] &, nn + 1, 0]] (* Michael De Vlieger, Feb 23 2021 *)
  • PARI
    A341356(n) = { my(m=2, k=3); while(n>=m, n \= m; m = k; k += 2); (n); }; \\ Antti Karttunen & Kevin Ryde, Feb 24 2021

A099566 A099565(n)/n.

Original entry on oeis.org

1, 2, 6, 6, 30, 30, 30, 240, 240, 240, 240, 240, 3120, 3120, 3120, 3120, 3120, 3120, 3120, 3120, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520
Offset: 1

Views

Author

John W. Layman, Oct 25 2004

Keywords

Comments

Notice that the runs of equal terms of this sequence gives the Fibonacci sequence. Also, if all duplicate terms are deleted, the resulting sequence, {1,2,6,30,240,3120,...}, appears to be A003266, the product of first n nonzero Fibonacci numbers F(1), ..., F(n).

Crossrefs

Showing 1-5 of 5 results.