cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099574 Diagonal sums of triangle A099573.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 9, 11, 18, 23, 37, 48, 74, 97, 147, 195, 290, 387, 568, 763, 1108, 1495, 2152, 2915, 4167, 5662, 8047, 10962, 15506, 21168, 29825, 40787, 57280, 78448, 109870, 150657, 210521, 288969, 403020, 553677, 770963, 1059932, 1473898
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^4)/((1-x^2-x^4)*(1-x-x^4)) )); // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    a[n_]:= a[n]= Sum[Binomial[n-k-j, j], {k,0,Floor[n/2]}, {j,0,Floor[k/2]}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    @CachedFunction
    def A099574(n): return sum(sum(binomial(n-k-j, j) for j in (0..(k//2))) for k in (0..(n//2)))
    [A099574(n) for n in (0..40)] # G. C. Greubel, Jul 25 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(k/2)} binomial(n-k-j, j).
G.f.: (1-x)*(1+x)*(1+x^2) / ( (1-x-x^4)*(1-x^2-x^4) ). - R. J. Mathar, Nov 11 2014
From G. C. Greubel, Jul 25 2022: (Start)
a(n) = A003269(n+5) - A079977(n+3) - A079977(n+2).
a(n) = A003269(n+5) - A103609(n+5). (End)