cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099579 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * 3^(k-1).

Original entry on oeis.org

0, 0, 1, 1, 7, 10, 40, 70, 217, 427, 1159, 2440, 6160, 13480, 32689, 73129, 173383, 392770, 919480, 2097790, 4875913, 11169283, 25856071, 59363920, 137109280, 315201040, 727060321, 1672663441, 3855438727, 8873429050, 20444528200
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*r^(k-1) has g.f. x^2/((1-r*x^2)*(1-x-r*x^2)) and satisfies the recurrence a(n) = a(n-1) + 2*r*a(n-2) - r*a(n-3) - r^2*a(n-4).

Crossrefs

Programs

  • Magma
    [n le 4 select Floor((n-1)/2) else Self(n-1) +6*Self(n-2) -3*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 24 2022
    
  • Mathematica
    LinearRecurrence[{1,6,-3,-9}, {0,0,1,1}, 50] (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099579
        if (n<4): return (n//2)
        else: return a(n-1) +6*a(n-2) -3*a(n-3) -9*a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 24 2022

Formula

G.f.: x^2/((1-3*x^2)*(1-x-3*x^2)).
a(n) = a(n-1) + 6*a(n-2) - 3*a(n-3) - 9*a(n-4).
From G. C. Greubel, Jul 24 2022: (Start)
a(n) = (i*sqrt(3))^(n-1)*ChebyshevU(n-1, -i/(2*sqrt(3))) - 3^((n-1)/2)*(1 - (-1)^n)/2.
E.g.f.: (1/sqrt(39))*( 2*sqrt(3)*exp(x/2)*sinh(sqrt(13)*x/2) - sqrt(13)*sinh(sqrt(3)*x) ). (End)