A099597 Array T(n,k) read by antidiagonals: expansion of exp(x+y)/(1-xy).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 19, 5, 1, 1, 6, 33, 82, 33, 6, 1, 1, 7, 51, 229, 229, 51, 7, 1, 1, 8, 73, 496, 1313, 496, 73, 8, 1, 1, 9, 99, 919, 4581, 4581, 919, 99, 9, 1, 1, 10, 129, 1534, 11905, 32826, 11905, 1534, 129, 10, 1, 1, 11, 163, 2377, 25733, 137431, 137431, 25733, 2377, 163, 11, 1
Offset: 0
Examples
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 1, 3, 9, 19, 33, 51, 1, 4, 19, 82, 229, 496, 1, 5, 33, 229, 1313, 4581, 1, 6, 51, 496, 4581, 32826,
Links
- E. W. Weisstein, Modified Bessel Function of the First Kind
Crossrefs
Programs
-
Maple
#A099597 T := proc(n,k) option remember; if n = 0 then 1 elif k = 0 then 1 else n*k*thisproc(n-1,k-1) + 1 fi end: # Diplay entries by antidiagonals seq(seq(T(n-k,k), k = 0..n), n = 0..10); # Peter Bala, Aug 19 2013
-
Mathematica
T[, 0] = T[0, ] = 1; T[n_, k_] := T[n, k] = n k T[n - 1, k - 1] + 1; Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)
Formula
T(n,k) = Sum_{i=0..min(n,k)} C(n,i)*C(k,i)*i!^2. The LDU factorization of this square array is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!^2, 1!^2, 2!^2, ... ). Compare with A088699. - Peter Bala, Nov 06 2007
Recurrence equation: T(n,k) = n*k*T(n-1,k-1) + 1 with boundary conditions T(n,0) = T(0,n ) = 1.
Main subdiagonal and main superdiagonal [1, 3, 19, 229, ...] is A228229. - Peter Bala, Aug 19 2013
nth row/column o.g.f.: HypergeometricPFQ[{1,1,-n},{},x/(x-1)]/(1-x) (see comment in A099599). - Natalia L. Skirrow, Jul 18 2025
Comments