A099604 Antidiagonal sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
1, 1, 2, 4, 7, 12, 23, 40, 72, 131, 233, 420, 756, 1355, 2438, 4381, 7868, 14144, 25413, 45661, 82058, 147444, 264943, 476092, 855483, 1537236, 2762296, 4963591, 8919173, 16027012, 28799164, 51749715, 92989886, 167094985, 300255720
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 3, 0, -2, -1).
Programs
-
Mathematica
LinearRecurrence[{0, 2, 3, 0, -2, -1}, {1, 1, 2, 4, 7, 12}, 35] (* Jean-François Alcover, Oct 30 2017 *)
-
PARI
a(n)=polcoeff((1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6)+x*O(x^n),n,x)
Formula
G.f.: (1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6).
a(n) = 2*a(n-2) + 3*a(n-3) - 2*a(n-5) - a(n-6) for n>=6.