A099645 Number of iterations until n reaches a number in A039943 under "x goes to sum of squares of digits of x" map.
0, 1, 5, 0, 4, 9, 5, 5, 4, 1, 2, 5, 2, 6, 3, 0, 5, 3, 4, 0, 5, 6, 3, 1, 3, 2, 6, 3, 2, 5, 2, 3, 4, 4, 5, 8, 0, 2, 5, 1, 6, 0, 4, 4, 7, 4, 3, 6, 4, 4, 3, 3, 5, 7, 5, 2, 4, 0, 2, 9, 1, 2, 8, 4, 2, 7, 2, 2, 5, 5, 5, 6, 1, 3, 4, 2, 2, 4, 3, 5, 3, 3, 2, 6, 1, 2, 4, 7, 0, 4, 4, 2, 5, 4, 2, 5, 3, 1, 8, 1, 2, 5, 2, 6, 3
Offset: 1
Examples
n=99999999999: iteration-list={99999999999,891,146,53,34,25,29,85,89,145,42,20,[4,16,37,58,89,145,42,20],4,...}. Lengths of transient=12, of cycle=8.
References
- Hugo Steinhaus: "Sto zadan" (1958), "One Hundred Problems in Elementary Mathematics" (1964), problem 2. - M. F. Hasler, May 24 2009
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Arthur Porges, A set of eight numbers, Amer. Math. Monthly 52 (1945), 379-382. - _M. F. Hasler_, May 24 2009
Crossrefs
Programs
-
Haskell
a099645 = length . takeWhile (`notElem` a039943_list) . iterate a003132 a099645_list = map a099645 [1..] -- Reinhard Zumkeller, Aug 24 2011
-
Mathematica
fu[x_] :=Apply[Plus, IntegerDigits[x]^2];hs=20; (* transient lengths are obtained by: *) a[n_] :=-1+Min[Flatten[Position[NestList[fu, n, Length[Union[NestList[fu, n, hs]]]] -Last[NestList[fu, n, Length[Union[NestList[fu, n, hs]]]]], 0]]]; Table[a[n], {n, 1, 256}]
-
PARI
A099645(n)={ local( c=0, S=Set([1,4,16,37,58,89,145,42,20])); while( !setsearch(S,n), n=A003132(n); c++); c} \\ M. F. Hasler, May 24 2009
Extensions
Terms checked using the given PARI code. However, according to the domain of A003132 and the definition of A039943 (which both include 0), an initial a(0)=0 should be added here, too. - M. F. Hasler, May 24 2009
Comments