cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099704 Consider the family of multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 2, 24, 776, 79840, 35397440, 69619053504, 564929183555840, 18464894708236907776, 2418517115222622481308160, 1267747370909677813160722947072, 2658511777246500251150215101758228480, 22300872810108738542496498718468714032205824
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGnSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021

A099706 Consider the family of directed multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 4, 84, 3568, 305712, 87782720, 144600947392, 1139235294403328, 37012349010095737088, 4840037457225169875031040, 2535930555678883610642223895552, 5317274645187046706095607711946092544, 44602319906972740832371696997145322907873280
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGdlSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.