cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099726 Sum of remainders of the n-th prime mod k, for k = 1,2,3,...,n.

Original entry on oeis.org

0, 1, 3, 5, 7, 7, 14, 18, 28, 30, 31, 26, 38, 45, 63, 71, 93, 75, 96, 115, 101, 142, 161, 167, 152, 159, 203, 224, 219, 222, 216, 250, 263, 296, 341, 320, 319, 349, 433, 427, 496, 419, 487, 481, 538, 537, 495, 631, 635, 676, 697, 777, 665, 820, 784, 874, 929, 856
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 07 2004

Keywords

Examples

			a(7)=14 because the 7th prime is 17 and its remainders modulo 1,2,3,4,5,6,7 are 0,1,2,1,2,5,3 respectively and 0+1+2+1+2+5+3=14.
		

Crossrefs

Programs

  • Maple
    umpf:=n->add(modp(floor(ithprime(n)),m),m=1..n); seq(umpf(k),k=1..120);
  • Mathematica
    Table[Total[Mod[Prime[p],Range[p]]],{p,Range[60]}] (* Harvey P. Dale, Feb 09 2025 *)
  • PARI
    a(n) = my(p=prime(n)); sum(k=1, n, p%k); \\ Daniel Suteu, Feb 02 2021
    
  • PARI
    T(n) = n*(n+1)/2;
    S(n) = my(s=sqrtint(n)); sum(k=1, s, T(n\k) + k*(n\k)) - s*T(s); \\ A024916
    g(a,b) = my(s=0); while(a <= b, my(t=b\a); my(u=b\t); s += t*(T(u) - T(a-1)); a = u+1); s;
    a(n) = my(p=prime(n)); n*p - S(p) + g(n+1, p); \\ Daniel Suteu, Feb 02 2021

Formula

a(n) = n*p - A024916(p) + Sum_{k=n+1..p} k*floor(p/k), where p = prime(n). - Daniel Suteu, Feb 02 2021

Extensions

Definition corrected by Daniel Suteu, Feb 02 2021