cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A342051 Numbers k which have an even number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is even.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * (1 - Sum_{k=1..m}(-1)^k/A002110(k)) = 1, 4, 19, 134, 1473, 19150, 325549 ...
The asymptotic density of this sequence is Sum_{k>=0} (-1)^k/A002110(k) = 0.637693... = 1 - A132120.
Also Heinz numbers of partitions with odd least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021

Examples

			1 is a term since A049345(1) = 1 has 0 trailing zero.
6 is a term since A049345(6) = 100 has 2 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
     1: {}           25: {3,3}          51: {2,7}
     3: {2}          27: {2,2,2}        53: {16}
     5: {3}          29: {10}           54: {1,2,2,2}
     6: {1,2}        31: {11}           55: {3,5}
     7: {4}          33: {2,5}          57: {2,8}
     9: {2,2}        35: {3,4}          59: {17}
    11: {5}          36: {1,1,2,2}      61: {18}
    12: {1,1,2}      37: {12}           63: {2,2,4}
    13: {6}          39: {2,6}          65: {3,6}
    15: {2,3}        41: {13}           66: {1,2,5}
    17: {7}          42: {1,2,4}        67: {19}
    18: {1,2,2}      43: {14}           69: {2,9}
    19: {8}          45: {2,2,3}        71: {20}
    21: {2,4}        47: {15}           72: {1,1,1,2,2}
    23: {9}          48: {1,1,1,1,2}    73: {21}
    24: {1,1,1,2}    49: {4,4}          75: {2,3,3}
(End)
		

Crossrefs

Complement of A342050.
A099788 is subsequence.
Analogous sequences: A000201 (Zeckendorf representation), A003159 (binary), A007417 (ternary), A232744 (factorial base).
The version for reversed binary expansion is A121539.
Positions of odd terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A339662 gives greatest gap in prime indices.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],OddQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)

A099800 Bisection of A002110.

Original entry on oeis.org

2, 30, 2310, 510510, 223092870, 200560490130, 304250263527210, 614889782588491410, 1922760350154212639070, 7858321551080267055879090, 40729680599249024150621323470, 267064515689275851355624017992790
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Maple
    a:=n->product(ithprime(j),j=1..2*n+1): seq(a(n),n=0..13); # Emeric Deutsch, Feb 23 2005

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A085087 a(1) = 1; for n>1, a(n) = a(n-1)*n if n is prime, a(n) = a(n-1)/n if n is composite dividing a(n-1) else a(n) = a(n-1).

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 35, 35, 35, 385, 385, 5005, 5005, 5005, 5005, 85085, 85085, 1616615, 1616615, 1616615, 1616615, 37182145, 37182145, 37182145, 37182145, 37182145, 37182145, 1078282205, 1078282205, 33426748355, 33426748355
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, If[PrimeQ[n], a[[-1]]*n, If[Divisible[a[[-1]], n], a[[-1]]/n, a[[-1]]]]], {n, 2, 32}]; a (* Ivan Neretin, May 21 2015 *)
  • PARI
    print1(k=1); for(n=2,99, if(isprime(n), k*=n, if(k%n==0, k/=n)); print1(", "k)) \\ Charles R Greathouse IV, May 21 2015

Formula

Let k be the number of members of A089581 that are <= n; then a(n) = A034386(n)/A099788(k). - David Wasserman, Jan 25 2005

Extensions

More terms from David Wasserman, Jan 25 2005
Showing 1-4 of 4 results.