A098970
Numbers k such that (12*k)^2 can be expressed as the sum of the cubes of two distinct primes.
Original entry on oeis.org
19, 67695, 411292, 1134035, 1184876, 2112836, 2455255, 4073384, 11293009, 16171470, 18589912, 34388501, 63609329, 63711615, 117446600, 166530856, 284034387, 449805631, 637548135, 685361103, 783484793, 888180400, 1121365940
Offset: 1
A099807
If a,b are prime numbers satisfying the Diophantine equation a^3+b^3=c^2, then a is -1 mod 12 and b is 1 mod 12, or vice versa. Choose 'b' to be 1 mod 12. This is the sequence of 'b' values, sorted by the magnitude of c.
Original entry on oeis.org
37, 2137, 8929, 1801, 48817, 6637, 57241, 133597, 151477, 334717, 3889, 127717, 786697, 735781, 1154017, 38557, 1662229, 2446777, 3882661, 3811669, 2747449, 3716701, 5634637, 3600097, 9836221, 10591849, 7139569, 9473161, 11395309
Offset: 0
37 is in the sequence because 37 is a prime congruent to 1 mod 12 and 11^3+37^3=228^2.
A099806
If a,b are prime numbers satisfying the Diophantine equation a^3+b^3=c^2, then a is -1 mod 12 and b is 1 mod 12, or vice versa. Choose 'a' to be -1 mod 12. This is the sequence of 'a' values, sorted by the magnitude of c.
Original entry on oeis.org
11, 8663, 28703, 56999, 44111, 86291, 87959, 16931, 246011, 54083, 367823, 552011, 457511, 571019, 765983, 1586531, 1915163, 2437751, 16139, 2305883, 4074743, 3963299, 1296563, 5440991, 4683779, 2238023, 9682703, 8681639, 8142803
Offset: 0
11 is in the sequence because 11 is -1 mod 12 and 11^3+37^3 = 228^2.
A099809
Let a,b be prime numbers satisfying the Diophantine equation a^3+b^3=(a+b)*(a^2-a*b+b^2)=c^2. Then the second factor a^2-a*b+b^2 is 3*e^2 for some integer e. This sequence tabulates the 'e' values, sorted by magnitude of c.
Original entry on oeis.org
19, 4513, 14689, 32401, 26929, 48019, 44641, 72739, 124099, 179683, 211249, 288979, 395089, 386131, 587233, 905059, 1040419, 1410049, 2237011, 1919779, 2078209, 2220451, 2950963, 2767489, 4919971, 5582449, 5019889, 5255761
Offset: 0
11^3+37^3=228^2, 11^2-11*37+37^2=3*e^2 with e=19, so 19 is in the sequence.
Showing 1-4 of 4 results.
Comments