A099832 Perimeters of Pythagorean triangles that can be constructed in exactly 3 different ways.
120, 168, 180, 252, 280, 336, 396, 528, 540, 560, 600, 624, 792, 864, 880, 936, 1040, 1050, 1056, 1120, 1176, 1224, 1232, 1248, 1350, 1368, 1380, 1404, 1456, 1620, 1632, 1650, 1656, 1710, 1728, 1740, 1760, 1764, 1824, 1836, 1860, 1960, 2002, 2052, 2080
Offset: 1
Keywords
Examples
a(1)=120 = 20+48+52 = 24+45+51 = 30+40+50; a(2)=168 = 21+72+75 = 24+70+74 = 42+56+70.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Ron Knott, Pythagorean Triples and Online Calculators
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries related to Pythagorean Triples.
Programs
-
Mathematica
SetSystemOptions["ReduceOptions" -> {"DiscreteSolutionBound" -> 2500}]; AllPerimeterTriples[n_Integer] /; n > 0 := Module[{result = Reduce[ Reduce[{x^2 + y^2 == z^2, z > y > x > 0, Element[{x, y, z}, Integers], x + y + z == n}, {x, y, z}]]}, If[result === False, {}, Sort[{x, y, z} /. {ToRules[result]}]]]; Select[ Range[ 2500], Length[ AllPerimeterTriples[#]] == 3 &] (* Robert G. Wilson v, Oct 17 2012 *)