A099854 A Chebyshev transform of A048739 related to the knot 8_5.
1, 3, 7, 14, 26, 48, 90, 170, 321, 605, 1139, 2144, 4037, 7603, 14319, 26966, 50782, 95632, 180094, 339154, 638697, 1202797, 2265111, 4265664, 8033113, 15127987, 28489079, 53650734, 101035250, 190269936, 358317010, 674783850, 1270755313
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-4,5,-4,3,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2)^2/((1-x+x^2)*(1-2*x+x^2-2*x^3+x^4)) )); // G. C. Greubel, Apr 20 2023 -
Mathematica
LinearRecurrence[{3,-4,5,-4,3,-1}, {1,3,7,14,26,48}, 51] (* G. C. Greubel, Apr 20 2023 *)
-
SageMath
def A099854_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^2)^2/((1-x+x^2)*(1-2*x+x^2-2*x^3+x^4)) ).list() A099854_list(50) # G. C. Greubel, Apr 20 2023
Formula
G.f.: (1 + x^2)^2/(1 - 3*x + 4*x^2 - 5*x^3 + 4*x^4 - 3*x^5 + x^6).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A048739(n-2*k).
a(n) = Sum_{k=0..n} A099846(n-k)*binomial(2, k/2)*(1+(-1)^k)/2.
a(n) = (1/2)*(3*A112575(n+1) + A112575(n) + 3*A112575(n-1) - A010892(n)). - G. C. Greubel, Apr 20 2023
Comments