cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099854 A Chebyshev transform of A048739 related to the knot 8_5.

Original entry on oeis.org

1, 3, 7, 14, 26, 48, 90, 170, 321, 605, 1139, 2144, 4037, 7603, 14319, 26966, 50782, 95632, 180094, 339154, 638697, 1202797, 2265111, 4265664, 8033113, 15127987, 28489079, 53650734, 101035250, 190269936, 358317010, 674783850, 1270755313
Offset: 0

Views

Author

Paul Barry, Oct 27 2004

Keywords

Comments

The g.f. is a transformation of the g.f. 1/((1-x)*(1-2*x-x^2)) of A048739 under the Chebyshev transform G(x)->(1/(1+x^2))*G(x/(1+x^2)). The denominator of the g.f. is a parameterization of the Alexander polynomial of the knot 8_5.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2)^2/((1-x+x^2)*(1-2*x+x^2-2*x^3+x^4)) )); // G. C. Greubel, Apr 20 2023
    
  • Mathematica
    LinearRecurrence[{3,-4,5,-4,3,-1}, {1,3,7,14,26,48}, 51] (* G. C. Greubel, Apr 20 2023 *)
  • SageMath
    def A099854_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^2/((1-x+x^2)*(1-2*x+x^2-2*x^3+x^4)) ).list()
    A099854_list(50) # G. C. Greubel, Apr 20 2023

Formula

G.f.: (1 + x^2)^2/(1 - 3*x + 4*x^2 - 5*x^3 + 4*x^4 - 3*x^5 + x^6).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A048739(n-2*k).
a(n) = Sum_{k=0..n} A099846(n-k)*binomial(2, k/2)*(1+(-1)^k)/2.
a(n) = (1/2)*(3*A112575(n+1) + A112575(n) + 3*A112575(n-1) - A010892(n)). - G. C. Greubel, Apr 20 2023
Showing 1-1 of 1 results.