cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099858 A Chebyshev transform of (1+3x)/(1-3x).

Original entry on oeis.org

1, 6, 17, 42, 109, 288, 755, 1974, 5167, 13530, 35423, 92736, 242785, 635622, 1664081, 4356618, 11405773, 29860704, 78176339, 204668310, 535828591, 1402817466, 3672623807, 9615053952, 25172538049, 65902560198, 172535142545
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

The g.f. is related to the g.f. of A099856 by the Chebyshev mapping G(x)-> (1/(1+x^2))*G(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2,3,-1},{1,6,17,42},40] (* Harvey P. Dale, Apr 17 2024 *)

Formula

G.f.: (1+3*x+x^2)/((1+x^2)*(1-3*x+x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(6*3^(n-2*k-1)-0^(n-2*k)).
a(n) = Sum_{k=0..n} (0^k+6*Fibonacci(2*k))*cos(Pi*(n-k)/2).
a(n) = Sum_{k=0..n} A099857(k)*cos(Pi*(n-k)/2).
a(n) = 3*a(n-1)-2*a(n-2)+3*a(n-3)-a(n-4).
a(n) = (1/2)*(4*Fibonacci(2*n+2) - i^n - (-i)^n). - Ralf Stephan, Dec 04 2004
Showing 1-1 of 1 results.