A099860 A Chebyshev transform related to the knot 7_1.
1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1,-1).
Crossrefs
Cf. A099859.
Programs
-
Mathematica
LinearRecurrence[{1,-1,1,-1,1,-1},{1,1,2,2,1,1},100] (* Harvey P. Dale, May 21 2019 *)
Formula
G.f.: (1+x^2)^2/(1-x+x^2-x^3+x^4-x^5+x^6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*A006053(n-2k+1)}.
Comments