cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099860 A Chebyshev transform related to the knot 7_1.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 2, 1, 1, 0, -1, -1, -2, -2
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

The g.f. is the transform of the g.f. of A006053(n+1) under the Chebyshev mapping G(x)-> (1/(1+x^2))G(x/(1+x^2)). The denominator of the g.f. is a parameterization of the Alexander polynomial of 7_1. It is also the 14th cyclotomic polynomial.

Crossrefs

Cf. A099859.

Programs

  • Mathematica
    LinearRecurrence[{1,-1,1,-1,1,-1},{1,1,2,2,1,1},100] (* Harvey P. Dale, May 21 2019 *)

Formula

G.f.: (1+x^2)^2/(1-x+x^2-x^3+x^4-x^5+x^6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*A006053(n-2k+1)}.