cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099871 Decimal expansion of Sum_{n >= 2} (1/log(n)^n).

Original entry on oeis.org

3, 2, 4, 2, 6, 0, 9, 4, 1, 0, 9, 2, 5, 2, 4, 8, 2, 1, 0, 6, 0, 2, 0, 3, 8, 7, 2, 8, 4, 9, 8, 1, 2, 8, 8, 1, 7, 8, 6, 3, 5, 8, 0, 4, 0, 4, 2, 6, 1, 9, 0, 8, 3, 9, 3, 4, 5, 3, 6, 6, 6, 0, 1, 4, 9, 3, 5, 0, 3, 2, 7, 8, 3, 7, 3, 0, 5, 4, 8, 4, 6, 6, 3, 9, 8, 8, 3, 1, 9, 9, 5, 2, 1, 5, 4, 0, 1, 9, 9, 4, 2, 2, 5, 4, 4
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 02 2004

Keywords

Examples

			3.2426094109252482106020387...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); [(&+[1/Log(k)^k: k in [2..1000]])]; // G. C. Greubel, Nov 20 2018
    
  • Maple
    evalf(sum(1/(log(n)^n),n=2..5000),105);
  • Mathematica
    digits = 105; NSum[1/Log[n]^n, {n, 2, Infinity}, NSumTerms -> 2*digits, WorkingPrecision -> digits+1] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 21 2014 *)
  • PARI
    default(realprecision, 100); sum(k=2, 1000, 1/log(k)^k) \\ G. C. Greubel, Nov 20 2018
    
  • Sage
    numerical_approx(sum(1/log(k)^k for k in [2..1000]), digits=100) # G. C. Greubel, Nov 20 2018

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar