A099871 Decimal expansion of Sum_{n >= 2} (1/log(n)^n).
3, 2, 4, 2, 6, 0, 9, 4, 1, 0, 9, 2, 5, 2, 4, 8, 2, 1, 0, 6, 0, 2, 0, 3, 8, 7, 2, 8, 4, 9, 8, 1, 2, 8, 8, 1, 7, 8, 6, 3, 5, 8, 0, 4, 0, 4, 2, 6, 1, 9, 0, 8, 3, 9, 3, 4, 5, 3, 6, 6, 6, 0, 1, 4, 9, 3, 5, 0, 3, 2, 7, 8, 3, 7, 3, 0, 5, 4, 8, 4, 6, 6, 3, 9, 8, 8, 3, 1, 9, 9, 5, 2, 1, 5, 4, 0, 1, 9, 9, 4, 2, 2, 5, 4, 4
Offset: 1
Examples
3.2426094109252482106020387...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
SetDefaultRealField(RealField(100)); [(&+[1/Log(k)^k: k in [2..1000]])]; // G. C. Greubel, Nov 20 2018
-
Maple
evalf(sum(1/(log(n)^n),n=2..5000),105);
-
Mathematica
digits = 105; NSum[1/Log[n]^n, {n, 2, Infinity}, NSumTerms -> 2*digits, WorkingPrecision -> digits+1] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 21 2014 *)
-
PARI
default(realprecision, 100); sum(k=2, 1000, 1/log(k)^k) \\ G. C. Greubel, Nov 20 2018
-
Sage
numerical_approx(sum(1/log(k)^k for k in [2..1000]), digits=100) # G. C. Greubel, Nov 20 2018
Extensions
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar