cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099873 Decimal expansion of Sum_{n>=2} ((-1)^n)/(log(n)^n).

Original entry on oeis.org

1, 5, 2, 8, 3, 2, 1, 4, 1, 1, 1, 9, 2, 6, 4, 4, 9, 1, 0, 1, 6, 8, 5, 1, 3, 4, 8, 5, 9, 6, 5, 9, 8, 7, 8, 2, 0, 6, 2, 6, 5, 5, 8, 3, 3, 3, 1, 0, 0, 8, 2, 3, 1, 3, 8, 4, 6, 4, 7, 1, 0, 8, 1, 8, 7, 8, 9, 5, 5, 5, 3, 9, 3, 6, 5, 8, 0, 8, 5, 0, 3, 1, 4, 6, 1, 8, 1, 9, 7, 1, 7, 2, 0, 2, 1, 8, 0, 4, 0, 0, 7, 1, 1, 2, 9
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 02 2004

Keywords

Examples

			1.52832141119264491016851348596598782062655833310082313846471081878...
		

Crossrefs

Cf. A099871.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); [(&+[(-1)^k/Log(k)^k: k in [2..1000]])]; // G. C. Greubel, Nov 20 2018
    
  • Mathematica
    RealDigits[ Sum[ N[(-1)^n/Log[n]^n, 128], {n, 2, 160}], 10, 111][[1]] (* Robert G. Wilson v, Dec 21 2004 *)
  • PARI
    sumalt(n=2,((-1)^(n))/(log(n)^n))
    
  • Sage
    numerical_approx(sum((-1)^k/log(k)^k for k in [2..1000]), digits=100) # G. C. Greubel, Nov 20 2018