A099897 XOR difference triangle, read by rows, of A099898 (in leftmost column) such that the main diagonal equals A099898 shift left and divided by 4.
1, 4, 5, 20, 16, 21, 84, 64, 80, 69, 276, 320, 256, 336, 277, 1108, 1344, 1024, 1280, 1104, 1349, 5396, 4416, 5120, 4096, 5376, 4432, 5141, 20564, 17728, 21504, 16384, 20480, 17664, 21584, 16453, 65812, 86336, 70656, 81920, 65536, 86016, 70912
Offset: 0
Examples
Rows begin: [_1], [_4,5], [20,_16,21], [84,_64,80,69], [276,320,_256,336,277], [1108,1344,_1024,1280,1104,1349], [5396,4416,5120,_4096,5376,4432,5141], [20564,17728,21504,_16384,20480,17664,21584,16453], [65812,86336,70656,81920,_65536,86016,70912,82256,65813],... notice that the column terms equal 4 times the diagonal (with offset), and that the central terms in the rows form the powers of 4.
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, [n/2]) = 4^n. T(n+1, 0) = 4*T(n, n) (n>=0); T(0, 0)=1; T(n, k) = T(n, k-1) XOR T(n-1, k-1) for n>k>0. T(n, k) = SumXOR_{i=0..k} (C(k, i)mod 2)*T(n-i, 0), where SumXOR is the analog of summation under the binary XOR operation and C(k, i)mod 2 = A047999(k, i).
Comments