A099900 XOR difference triangle, read by rows, of A099901 (in leftmost column) such that the main diagonal equals A099901 shift left and divided by 2.
1, 2, 3, 6, 4, 7, 14, 8, 12, 11, 22, 24, 16, 28, 23, 46, 56, 32, 48, 44, 59, 118, 88, 96, 64, 112, 92, 103, 206, 184, 224, 128, 192, 176, 236, 139, 278, 472, 352, 384, 256, 448, 368, 412, 279, 558, 824, 736, 896, 512, 768, 704, 944, 556, 827, 1654, 1112, 1888, 1408
Offset: 0
Examples
Rows begin: [_1], [_2,3], [6,_4,7], [14,_8,12,11], [22,24,_16,28,23], [46,56,_32,48,44,59], [118,88,96,_64,112,92,103], [206,184,224,_128,192,176,236,139], [278,472,352,384,_256,448,368,412,279], [558,824,736,896,_512,768,704,944,556,827], [1654,1112,1888,1408,1536,_1024,1792,1472,1648,1116,1895],... notice that the column terms equal twice the diagonal (with offset), and that the central terms in the rows form the powers of 2.
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, [n/2]) = 2^n. T(n+1, 0) = 2*T(n, n) (n>=0); T(0, 0)=1; T(n, k) = T(n, k-1) XOR T(n-1, k-1) for n>k>0. T(n, k) = SumXOR_{i=0..k} (C(k, i)mod 2)*T(n-i, 0), where SumXOR is the analog of summation under the binary XOR operation and C(k, i)mod 2 = A047999(k, i).
Comments