A099904 Numerator of sum of all matrix elements of N X N matrix M(i,j) = i^3+j^3, (i,j = 1..n) divided by n!.
2, 18, 36, 100, 75, 147, 98, 18, 45, 605, 121, 169, 1183, 7, 1, 289, 289, 361, 361, 1, 11, 5819, 529, 1, 13, 13, 1, 841, 841, 961, 961, 1, 17, 17, 1, 1369, 26011, 19, 1, 1681, 1681, 1849, 1849, 1, 23, 50807, 2209, 1, 1, 1, 1, 2809, 2809, 1, 1, 1, 29, 100949, 3481, 3721
Offset: 1
Keywords
Examples
A099903(n)/n! begins 2, 18, 36, 100/3, 75/4, 147/20, 98/45, 18/35, 45/448, ... So a(6) = 147.
Programs
-
Mathematica
Table[ Numerator[ Sum[(i^3 + j^3), {i, n}, {j, n}]/n! ], {n, 60}]
Formula
a(n) = Numerator[1/n!*Sum[Sum[(i^3+j^3), {i, 1, n}], {j, 1, n}]] a(n) = Numerator[1/2 * (n^3)*(n+1)^2 /n! ].
Comments