A099938 Consider the sequence of circles C0, C1, C2, C3 ..., where C0 is a half-circle of radius 1. C1 is the largest circle that fits into C0 and has radius 1/2. C(n+1) is the largest circle that fits inside C0 but outside C(n), etc. Sequence gives the curvatures (reciprocals of the radii) of the circles.
2, 4, 18, 100, 578, 3364, 19602, 114244, 665858, 3880900, 22619538, 131836324, 768398402, 4478554084, 26102926098, 152139002500, 886731088898, 5168247530884, 30122754096402, 175568277047524, 1023286908188738, 5964153172084900, 34761632124320658
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Francisco Javier Garcia Capitan Blog, About the A099938 sequence
- David Wasserman, Illustration of this sequence
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Crossrefs
Equals 2 * A055997(n-1).
Programs
-
Mathematica
Table[FullSimplify[2 Cosh[n ArcSinh[1]]^2], {n, 0, 9}] (* Francisco Javier García Capitán, Jun 05 2016 *)
-
PARI
Vec(-2*x*(2*x^2-5*x+1)/((x-1)*(x^2-6*x+1)) + O(x^30)) \\ Colin Barker, Jun 05 2016
Formula
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). G.f.: -2*x*(2*x^2-5*x+1) / ((x-1)*(x^2-6*x+1)). - Colin Barker, Jan 07 2013
a(n) = 1/2*(2 + (3 - 2*sqrt(2))^n*(3 + 2*sqrt(2)) + (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n). - Colin Barker, Jun 05 2016
Extensions
More terms from David Wasserman, Feb 28 2008
Comments