A099940 a(n) = 2*(A056855(n)) /(phi(n)*n), where phi() is the Euler phi function.
2, 1, 1, 1, 5, 1, 84, 11, 184, 15, 193248, 23, 19056960, 833, 33740, 64035, 520105017600, 2473, 130859579289600, 203685, 963513600, 23748417, 16397141420298240000, 645119, 555804546402631680, 8527366575
Offset: 1
Keywords
Examples
a(6) = 2*(1 + 1/5)*1*5/(6*2) = 1.
References
- G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, fifth edition, Oxford Science Publication, pp. 100-102
Links
- Eric Weisstein's World of Mathematics, Leudesdorf Theorem
- Eric Weisstein's World of Mathematics, Bauers Identical Congruence
Programs
-
Mathematica
f[n_] := Block[{k = Select[Range[n], GCD[ #, n] == 1 &]}, 2Plus @@ (Times @@ k*Plus @@ 1/k)/EulerPhi[n]/n]; Table[ f[n], {n, 26}] (* Robert G. Wilson v, Nov 16 2004 *)
Extensions
More terms from Don Reble, Nov 12 2004, who remarks that the conjecture is true for n <= 5000.
Comments