A099997 Bisection of A001597.
1, 8, 16, 27, 36, 64, 100, 125, 144, 196, 225, 256, 324, 361, 441, 512, 576, 676, 784, 900, 1000, 1089, 1225, 1331, 1444, 1600, 1728, 1849, 2025, 2116, 2197, 2304, 2500, 2704, 2809, 3025, 3136, 3364, 3481, 3721, 3969, 4225, 4489, 4761, 4913, 5184, 5476
Offset: 1
Programs
-
Mathematica
t = Union@ Flatten@ Join[{1}, Table[ n^i, {n, 2, Sqrt[5775]}, {i, 2, Log[n, 5775]}]]; t[[2# - 1]] & /@ Range@(Length@t/2) (* Robert G. Wilson v *)
-
Python
from sympy import mobius, integer_nthroot def A099997(n): def f(x): return int((n<<1)-3+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Extensions
More terms from Robert G. Wilson v, Dec 14 2005