A100002 Start with a sequence of 1's, then replace every other 1 with a 2; then replace every third of the remaining 1's with a 3 and every third of the remaining 2's with a 3; then replace every fourth remaining 1, 2 or 3 with a 4; and so on. The limiting sequence is shown here.
1, 2, 1, 2, 3, 3, 1, 2, 4, 4, 3, 4, 1, 2, 5, 5, 3, 5, 1, 2, 4, 5, 3, 4, 6, 6, 1, 2, 6, 3, 7, 7, 6, 4, 7, 7, 5, 6, 1, 2, 5, 3, 8, 8, 7, 4, 8, 8, 1, 2, 6, 7, 3, 6, 5, 8, 4, 8, 5, 6, 9, 9, 1, 2, 9, 3, 10, 10, 9, 4, 10, 10, 7, 8, 9, 5, 7, 10, 1, 2, 9, 7, 3, 4, 9, 6, 11, 11, 10, 11
Offset: 1
Examples
Here are the first 6 stages in the construction: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1... 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2... 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3... 1 2 1 2 3 3 1 2 4 4 3 4 1 2 1 2 3 3 1 2 4 4 3 4 1 2 1 2 3 3... 1 2 1 2 3 3 1 2 4 4 3 4 1 2 5 5 3 5 1 2 4 5 3 4 1 2 1 2 3 3... 1 2 1 2 3 3 1 2 4 4 3 4 1 2 5 5 3 5 1 2 4 5 3 4 6 6 1 2 6 3... ...
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- T. D. Noe, Plot of first 5000 terms
- A post on sci.math.research newsgroup.
Crossrefs
Cf. A100287 (first occurrence of n).
Programs
-
C
#define MAXVAL 2048 /* Large enough... */ unsigned int counts[MAXVAL][MAXVAL]; /* Initialized at all 0 */ unsigned int seq_value (void) /* Successive calls return values in the sequence, in order. */ { unsigned int value; unsigned int i; value = 1; for ( i=2; i
= i ) { counts[i][value] = 0; value = i; } return value; } -
Mathematica
nn=100; t=Table[1, {nn}]; done=False; k=1; While[ !done, k++; cnt=Table[0, {k-1}]; Do[If[t[[i]]
T. D. Noe *) a[n_] := Fold[Function[{b1, b2},Fold[Function[{a1, a2},ReplacePart[a1, Pick[Position[a1, a2], Take[Flatten[Array[{Array[0 &, b2 - 1], 1} &, Length[a1]]], Length[Position[a1, a2]]], 1] -> b2]], b1, Range[b2 - 1]]], Array[1 &, n], Range[2, 2 Sqrt[n/Pi] + 1]]; a[100] (* Birkas Gyorgy, Feb 06 2011 *)
Formula
a(1, j)=1 for all j>=1; a(n, j)=a(n-1, j) except when #{i<=j s.t. a(n-1, i)=a(n-1, j)} is multiple of n, in which case a(n, j)=n; a(j) is the limit of the (stationary) a(n, j) when n tends to infinity.
It appears that the maximal value among the first n terms grows like sqrt(4n/3).
Comments