A100007 Number of unitary divisors of 2n-1 (d such that d divides 2n-1, GCD(d,(2n-1)/d)=1). Bisection of A034444.
1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 8, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 8, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 4, 4
Offset: 1
Examples
a(13)=2 because among the three divisors of 25 only 1 and 25 are unitary.
Programs
-
Maple
with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n-1)[2])) od: # Emeric Deutsch, Dec 24 2004
-
Mathematica
a[n_] := 2^PrimeNu[2*n-1]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
-
PARI
a(n) = 2^omega(2*n-1); \\ Amiram Eldar, Jan 28 2023
Formula
From Ilya Gutkovskiy, Apr 28 2017: (Start)
a(n) = [x^(2*n-1)] Sum_{k>=1} mu(k)^2*x^k/(1 - x^k).
a(n) = 2^omega(2*n-1). (End)
From Amiram Eldar, Jan 28 2023: (Start)
Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + 7*log(2)/3 - 2*zeta'(2)/zeta(2)) / Pi^2, where gamma is Euler's constant (A001620). (End)
Extensions
More terms from Emeric Deutsch, Dec 24 2004