A100033 Bisection of A001700.
3, 35, 462, 6435, 92378, 1352078, 20058300, 300540195, 4537567650, 68923264410, 1052049481860, 16123801841550, 247959266474052, 3824345300380220, 59132290782430712, 916312070471295267, 14226520737620288370
Offset: 0
Programs
-
Maple
a:=n->binomial(4*n+3,2*n+2): seq(a(n),n=0..19);
Formula
a(n) = binomial(4*n+3, 2*n+2). - Emeric Deutsch, Dec 09 2004
From Peter Bala, Mar 19 2023: (Start)
a(n) = (1/2)*Sum_{k = 0..2*n+2} binomial(2*n+2,k)^2.
a(n) = (1/2)*hypergeom([-2 - 2*n, -2 - 2*n], [1], 1).
a(n) = 2*(4*n + 1)*(4*n + 3)/((n + 1)*(2*n + 1)) * a(n-1). (End)
From Peter Bala, Mar 28 2023: (Start)
a(n) = (1/(2*n + 2))*Sum_{k = 0..2*n+2} k*binomial(2*n+2,k)^2.
a(n) = 2*(n + 1)*hypergeom([-1 - 2*n, -1 - 2*n], [2], 1). (End)
Extensions
More terms from Emeric Deutsch, Dec 09 2004