cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100068 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*3^(n-2*k).

Original entry on oeis.org

1, 3, 11, 36, 123, 408, 1370, 4560, 15235, 50760, 169326, 564336, 1881582, 6271632, 20907156, 69689376, 232304355, 774343560, 2581169510, 8603882160, 28679699578, 95598937008, 318663476076, 1062211351776, 3540705857998, 11802351958608, 39341178395660, 131137257852000
Offset: 0

Views

Author

Paul Barry, Nov 02 2004

Keywords

Comments

An inverse Chebyshev transform of x/(1-3*x), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. In general, Sum_{k=0..floor(n/2)} binomial(n,k) * r^(n-2*k) has g.f. 2*x/(sqrt(1-4*x^2)*(r*sqrt(1-4*x^2) + 2*x - r)). - corrected by Vaclav Kotesovec, Dec 06 2012
Generally (for r>1), a(n) ~ (r + 1/r)^n. - Vaclav Kotesovec, Dec 06 2012

Crossrefs

Programs

  • Magma
    m:=3; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 08 2022
    
  • Mathematica
    CoefficientList[Series[2*x/(Sqrt[1-4*x^2]*(3*Sqrt[1-4*x^2] + 2*x-3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec(2*x/(sqrt(1-4*x^2)*(3*sqrt(1-4*x^2)+2*x-3))) \\ Joerg Arndt, May 12 2013
    
  • SageMath
    m=3; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 08 2022

Formula

G.f.: 2*x/(sqrt(1-4*x^2)*(3*sqrt(1-4*x^2)+2*x-3)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*3^(n-k).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1+(-1)^(n-k))*3^k/2.
D-finite with recurrence 9*n*a(n) +12*(-3*n+1)*a(n-1) +4*(-4*n-1)*a(n-2) +48*(3*n-4)*a(n-3) +80*(-n+3)*a(n-4)=0. - R. J. Mathar, Nov 22 2012
a(n) ~ 10^n/3^n. - Vaclav Kotesovec, Dec 06 2012