A100069 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*4^(n-2*k).
1, 4, 18, 76, 326, 1384, 5892, 25036, 106438, 452344, 1922588, 8170936, 34726940, 147589264, 627256088, 2665837516, 11329815878, 48151714264, 204644809932, 869740430056, 3696396920116, 15709686864304, 66766169526008, 283756220309176, 1205963937666076, 5125346734404784
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=4; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 08 2022
-
Mathematica
CoefficientList[Series[x/(Sqrt[1-4*x^2]*(2*Sqrt[1-4*x^2]+x-2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
-
PARI
my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2))) \\ Joerg Arndt, May 12 2013
-
SageMath
m=4; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 08 2022
Formula
G.f.: x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2)). - corrected by Vaclav Kotesovec, Dec 06 2012
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*4^(n-2*k).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*4^k/2.
8*n*a(n) = 2*(19*n-4)*a(n-1) + (15*n+2)*a(n-2) - 8*(19*n-23)*a(n-3) + 68*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 22 2012
a(n) ~ 17^n/4^n. - Vaclav Kotesovec, Dec 06 2012
Comments