cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100097 An inverse Chebyshev transform of the Pell numbers.

Original entry on oeis.org

0, 1, 2, 8, 20, 64, 172, 512, 1416, 4096, 11468, 32768, 92248, 262144, 739832, 2097152, 5925520, 16777216, 47429900, 134217728, 379536440, 1073741824, 3036661032, 8589934592, 24294699120, 68719476736, 194363001272, 549755813888, 1554924811376, 4398046511104
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-2*x-x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+2*x)/((1-4*x^2)*(1-8*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(sqrt(1-4*x^2)+2*x)/((1-4*x^2)*(1-8*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A000129(n-2*k).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +4*(3*n-7)*a(n-2) +4*(3*n-10)*a(n-3) +32*(-n+3)*a(n-4) +32*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = 4*(3*n-7)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 2^((3*n-3)/2). - Vaclav Kotesovec, Feb 12 2014
a(2*n) = 8^n/(2*sqrt(2)) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 1/2)/(4*n!), a(2*n+1) = 8^n. - Vladimir Reshetnikov, Oct 13 2016