cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100095 An inverse Chebyshev transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 5, 7, 25, 41, 125, 225, 625, 1195, 3125, 6227, 15625, 32059, 78125, 163727, 390625, 831505, 1953125, 4206145, 9765625, 21215481, 48828125, 106782837, 244140625, 536618341, 1220703125, 2693492305, 6103515625, 13507578125
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-x-x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is (-1)^n*(2^n-0^n)/2. Hankel transform of a(n+1) is A141125. - Paul Barry, Jun 05 2008
Basically A000351 interleaved with A144635. - Peter Luschny, May 31 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2*Sqrt[1-4*x^2]+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Maxima
    a(n):=sum(4^(j)*binomial((n-1)/2,j),j,0,(n-1)/2); /* Vladimir Kruchinin, May 31 2014 */

Formula

G.f.: (x^2*sqrt(1-4*x^2)+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*Fibonacci(n-2*k).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +(9*n-22)*a(n-2) +(9*n-31)*a(n-3) +20*(-n+3)*a(n-4) +20*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = (9*n-22)*a(n-2) - 20*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 5^((n-1)/2). - Vaclav Kotesovec, Feb 12 2014
a(n) = sum(j=0..(n-1)/2, 4^(j)*binomial((n-1)/2,j)). - Vladimir Kruchinin, May 31 2014
a(2*n) = 5^n/sqrt(5) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 4/5)/(5*n!), a(2*n+1) = 5^n. - Vladimir Reshetnikov, Oct 13 2016

A100096 An inverse Chebyshev transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 6, 9, 36, 66, 218, 449, 1332, 2946, 8196, 18954, 50688, 120576, 314586, 761889, 1957092, 4794426, 12194828, 30093854, 76067256, 188595276, 474810276, 1180734234, 2965094536, 7387570516, 18521858088, 46203981924, 115721310552
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-x-2*x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is (-1)^n*n. Hankel transform of a(n+1) is A141124. - Paul Barry, Jun 05 2008

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(3*Sqrt[1-4*x^2]+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(3*sqrt(1-4*x^2)+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A001045(n-2*k).
Conjecture: 2*(-n+1)*a(n) +(n+3)*a(n-1) +18*(n-2)*a(n-2) +4*(-n-2)*a(n-3) +40*(-n+3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (5/2)^n / 3. - Vaclav Kotesovec, Feb 12 2014

A194349 E.g.f.: -log( sqrt(1-x^2) - x ).

Original entry on oeis.org

1, 2, 5, 24, 129, 960, 7965, 80640, 903105, 11612160, 163451925, 2554675200, 43259364225, 797058662400, 15764670046125, 334764638208000, 7571150452490625, 182111963185152000, 4634731528895593125, 124564582818643968000
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2011

Keywords

Comments

Compare e.g.f. to arccosh(x) = log(sqrt(x^2-1) + x).

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 5*x^3/3! + 24*x^4/4! + 129*x^5/5! + ...
where
exp(A(x)) = 1 + 2*(x/2) + 6*(x/2)^2 + 16*(x/2)^3 + 46*(x/2)^4 + 128*(x/2)^5 + ... + A098617(n)*(x/2)^n + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Rest[CoefficientList[Series[-Log[Sqrt[1-x^2]-x],{x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Dec 01 2011 *)
  • PARI
    {a(n)=n!*polcoeff(-log(sqrt(1-x^2+x*O(x^n))-x),n)}
    
  • PARI
    {A000129(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=if(n<1,0,sum(k=0,floor((n+1)/2),binomial(n+1, k)*A000129(n+1-2*k))*(n-1)!/2^n)}

Formula

a(2*n) = 2^n*(2*n-1)! for n>=1.
a(n) = A100097(n+1)*(n-1)!/2^n for n>=1.
a(n) = (n-1)!/2^n * Sum_{k=0..floor((n+1)/2)} C(n+1,k)*A000129(n+1-2*k) for n >= 1. [From a formula of Paul Barry in A100097]
E.g.f.: log( (sqrt(1-x^2) + x)/(1-2*x^2) ).
Showing 1-3 of 3 results.