cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A100096 An inverse Chebyshev transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 6, 9, 36, 66, 218, 449, 1332, 2946, 8196, 18954, 50688, 120576, 314586, 761889, 1957092, 4794426, 12194828, 30093854, 76067256, 188595276, 474810276, 1180734234, 2965094536, 7387570516, 18521858088, 46203981924, 115721310552
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-x-2*x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is (-1)^n*n. Hankel transform of a(n+1) is A141124. - Paul Barry, Jun 05 2008

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(3*Sqrt[1-4*x^2]+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(3*sqrt(1-4*x^2)+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A001045(n-2*k).
Conjecture: 2*(-n+1)*a(n) +(n+3)*a(n-1) +18*(n-2)*a(n-2) +4*(-n-2)*a(n-3) +40*(-n+3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (5/2)^n / 3. - Vaclav Kotesovec, Feb 12 2014

A100097 An inverse Chebyshev transform of the Pell numbers.

Original entry on oeis.org

0, 1, 2, 8, 20, 64, 172, 512, 1416, 4096, 11468, 32768, 92248, 262144, 739832, 2097152, 5925520, 16777216, 47429900, 134217728, 379536440, 1073741824, 3036661032, 8589934592, 24294699120, 68719476736, 194363001272, 549755813888, 1554924811376, 4398046511104
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-2*x-x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+2*x)/((1-4*x^2)*(1-8*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(sqrt(1-4*x^2)+2*x)/((1-4*x^2)*(1-8*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A000129(n-2*k).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +4*(3*n-7)*a(n-2) +4*(3*n-10)*a(n-3) +32*(-n+3)*a(n-4) +32*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = 4*(3*n-7)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 2^((3*n-3)/2). - Vaclav Kotesovec, Feb 12 2014
a(2*n) = 8^n/(2*sqrt(2)) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 1/2)/(4*n!), a(2*n+1) = 8^n. - Vladimir Reshetnikov, Oct 13 2016

A373583 Expansion of 1 / ( (1 - 16*x^4) * (1 - x/(1 - 16*x^4)^(1/4)) ).

Original entry on oeis.org

1, 1, 1, 1, 17, 21, 25, 29, 289, 397, 521, 661, 4913, 7229, 10137, 13701, 83521, 129133, 190249, 269877, 1419857, 2280125, 3492281, 5149701, 24137569, 39950221, 63153481, 96159061, 410338673, 696126557, 1129839065, 1767607973, 6975757441, 12080257069
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, 16^k*binomial(n/4, k));

Formula

a(4*n) = 17^n for n >= 0.
a(n) = Sum_{k=0..floor(n/4)} 16^k * binomial(n/4,k).
a(n) == 1 (mod 4).

A141125 Hankel transform of a transform of Fibonacci numbers.

Original entry on oeis.org

1, 4, -4, -16, 16, 64, -64, -256, 256, 1024, -1024, -4096, 4096, 16384, -16384, -65536, 65536, 262144, -262144, -1048576, 1048576, 4194304, -4194304, -16777216, 16777216, 67108864, -67108864, -268435456, 268435456, 1073741824, -1073741824, -4294967296, 4294967296
Offset: 0

Views

Author

Paul Barry, Jun 05 2008

Keywords

Comments

Hankel transform of A100095(n+1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,-4},{1,4},33] (* or *) CoefficientList[Series[(1+4x)/(1+4x^2),{x,0,32}],x] (* James C. McMahon, Jul 17 2025 *)

Formula

G.f.: (1+4x)/(1+4x^2).
a(n) = 2^n*(cos(Pi*n/2)+2*sin(Pi*n/2)).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: cos(2*x) + 2*sin(2*x). - Stefano Spezia, Jul 18 2025

Extensions

More terms from James C. McMahon, Jul 18 2025

A373278 Expansion of 1 / ( (1 - 9*x^3) * (1 - x/(1 - 9*x^3)^(1/3)) ).

Original entry on oeis.org

1, 1, 1, 10, 13, 16, 100, 148, 205, 1000, 1606, 2410, 10000, 17005, 27070, 100000, 177421, 295648, 1000000, 1833178, 3168538, 10000000, 18811948, 33503020, 100000000, 192080866, 350707345, 1000000000, 1953820210, 3642942040, 10000000000, 19815499120, 37611477133
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(n/3, k));

Formula

a(3*n) = 10^n for n >= 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3,k).
a(n) == 1 (mod 3).
D-finite with recurrence (n-1)*(n-2)*a(n) +2*(-14*n^2+69*n-91)*a(n-3) +9*(n-3)*(29*n-114)*a(n-6) -810*(n-3)*(n-6)*a(n-9)=0. - R. J. Mathar, Jun 21 2024

A373621 Expansion of 1 / ( (1 - 25*x^5) * (1 - x/(1 - 25*x^5)^(1/5)) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 26, 31, 36, 41, 46, 676, 881, 1111, 1366, 1646, 17576, 24281, 32386, 42016, 53296, 456976, 658806, 916411, 1238666, 1635071, 11881376, 17706456, 25462936, 35569066, 48496846, 308915776, 472880356, 698851961, 1003283216, 1405555496, 8031810176
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, 25^k*binomial(n/5, k));

Formula

a(5*n) = 26^n for n >= 0.
a(n) = Sum_{k=0..floor(n/5)} 25^k * binomial(n/5,k).
a(n) == 1 (mod 5).
Showing 1-6 of 6 results.