cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100095 An inverse Chebyshev transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 5, 7, 25, 41, 125, 225, 625, 1195, 3125, 6227, 15625, 32059, 78125, 163727, 390625, 831505, 1953125, 4206145, 9765625, 21215481, 48828125, 106782837, 244140625, 536618341, 1220703125, 2693492305, 6103515625, 13507578125
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-x-x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is (-1)^n*(2^n-0^n)/2. Hankel transform of a(n+1) is A141125. - Paul Barry, Jun 05 2008
Basically A000351 interleaved with A144635. - Peter Luschny, May 31 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2*Sqrt[1-4*x^2]+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Maxima
    a(n):=sum(4^(j)*binomial((n-1)/2,j),j,0,(n-1)/2); /* Vladimir Kruchinin, May 31 2014 */

Formula

G.f.: (x^2*sqrt(1-4*x^2)+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*Fibonacci(n-2*k).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +(9*n-22)*a(n-2) +(9*n-31)*a(n-3) +20*(-n+3)*a(n-4) +20*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = (9*n-22)*a(n-2) - 20*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 5^((n-1)/2). - Vaclav Kotesovec, Feb 12 2014
a(n) = sum(j=0..(n-1)/2, 4^(j)*binomial((n-1)/2,j)). - Vladimir Kruchinin, May 31 2014
a(2*n) = 5^n/sqrt(5) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 4/5)/(5*n!), a(2*n+1) = 5^n. - Vladimir Reshetnikov, Oct 13 2016

A100097 An inverse Chebyshev transform of the Pell numbers.

Original entry on oeis.org

0, 1, 2, 8, 20, 64, 172, 512, 1416, 4096, 11468, 32768, 92248, 262144, 739832, 2097152, 5925520, 16777216, 47429900, 134217728, 379536440, 1073741824, 3036661032, 8589934592, 24294699120, 68719476736, 194363001272, 549755813888, 1554924811376, 4398046511104
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-2*x-x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+2*x)/((1-4*x^2)*(1-8*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(sqrt(1-4*x^2)+2*x)/((1-4*x^2)*(1-8*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A000129(n-2*k).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +4*(3*n-7)*a(n-2) +4*(3*n-10)*a(n-3) +32*(-n+3)*a(n-4) +32*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = 4*(3*n-7)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 2^((3*n-3)/2). - Vaclav Kotesovec, Feb 12 2014
a(2*n) = 8^n/(2*sqrt(2)) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 1/2)/(4*n!), a(2*n+1) = 8^n. - Vladimir Reshetnikov, Oct 13 2016

A141124 Hankel transform of a transform of Jacobsthal numbers.

Original entry on oeis.org

1, 5, -9, -9, 17, 13, -25, -17, 33, 21, -41, -25, 49, 29, -57, -33, 65, 37, -73, -41, 81, 45, -89, -49, 97, 53, -105, -57, 113, 61, -121, -65, 129, 69, -137, -73, 145, 77, -153, -81, 161, 85, -169, -89, 177, 93, -185, -97, 193, 101, -201
Offset: 0

Views

Author

Paul Barry, Jun 05 2008

Keywords

Comments

Hankel transform of A100096(n+1).

Crossrefs

Cf. A017077 (unsigned bisection), A016813 (unsigned bisection).

Formula

G.f.: (1+5x-7x^2+x^3)/(1+2x^2+x^4); a(n)=(4n+1)*cos(pi*n/2)+(2n+3)*sin(pi*n/2);
Showing 1-3 of 3 results.